全概率公式是概率论中的一个公式,用于计算一个事件的期望值(Expectation)。期望值是随机变量的平均值,它反映了随机变量的中心趋势。
对于离散随机变量 X ,其全概率公式为:
E
(
X
)
=
∑
i
=
1
n
x
i
P
(
X
=
x
i
)
E(X) = \sum_{i=1}^{n} x_i P(X = x_i)
E(X)=i=1∑nxiP(X=xi)
其中, x_i 是随机变量 X 的可能取值, P(X = x_i) 是 X 取这些值的概率。
对于连续随机变量 X ,其期望值的全概率公式为:
E
(
X
)
=
∫
−
∞
∞
x
f
(
x
)
d
x
E(X) = \int_{-\infty}^{\infty} x f(x) \, dx
E(X)=∫−∞∞xf(x)dx
其中, f(x) 是 X 的概率密度函数。
如果随机变量 X 的取值依赖于另一个随机变量 Y ,那么 X 的期望值可以通过条件期望值来计算:
E
(
X
)
=
∑
y
E
(
X
∣
Y
=
y
)
P
(
Y
=
y
)
E(X) = \sum_{y} E(X | Y = y) P(Y = y)
E(X)=y∑E(X∣Y=y)P(Y=y)
或者对于连续随机变量:
E
(
X
)
=
∫
E
(
X
∣
Y
=
y
)
f
Y
(
y
)
d
y
E(X) = \int E(X | Y = y) f_Y(y) \, dy
E(X)=∫E(X∣Y=y)fY(y)dy
这里 E(X | Y = y) 是给定 Y = y 时 X 的条件期望值, f_Y(y) 是 Y 的概率密度函数。
全概率公式在贝叶斯定理中也有应用,它允许我们根据已知的边缘概率和条件概率来计算未知的条件概率。
01-28
631

05-10
4173

11-18
1676

07-20
506

11-23
860
