期望Expectation的全概率公式

全概率公式是概率论中的一个公式,用于计算一个事件的期望值(Expectation)。期望值是随机变量的平均值,它反映了随机变量的中心趋势。
对于离散随机变量 X ,其全概率公式为:
E ( X ) = ∑ i = 1 n x i P ( X = x i ) E(X) = \sum_{i=1}^{n} x_i P(X = x_i) E(X)=i=1nxiP(X=xi)
其中, x_i 是随机变量 X 的可能取值, P(X = x_i) 是 X 取这些值的概率。
对于连续随机变量 X ,其期望值的全概率公式为:
E ( X ) = ∫ − ∞ ∞ x f ( x )   d x E(X) = \int_{-\infty}^{\infty} x f(x) \, dx E(X)=xf(x)dx
其中, f(x) 是 X 的概率密度函数。
如果随机变量 X 的取值依赖于另一个随机变量 Y ,那么 X 的期望值可以通过条件期望值来计算:
E ( X ) = ∑ y E ( X ∣ Y = y ) P ( Y = y ) E(X) = \sum_{y} E(X | Y = y) P(Y = y) E(X)=yE(XY=y)P(Y=y)
或者对于连续随机变量:
E ( X ) = ∫ E ( X ∣ Y = y ) f Y ( y )   d y E(X) = \int E(X | Y = y) f_Y(y) \, dy E(X)=E(XY=y)fY(y)dy
这里 E(X | Y = y) 是给定 Y = y 时 X 的条件期望值, f_Y(y) 是 Y 的概率密度函数。
全概率公式在贝叶斯定理中也有应用,它允许我们根据已知的边缘概率和条件概率来计算未知的条件概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值