Stable Diffusion绘画 | ControlNet应用-instant-ID控制器:快速生成人物多角度图片

在这里插入图片描述

使用 instant-ID 控制器,用户只需要提供一张正脸图片,就可以快速地给人物生成多角度图片的,从而很好的保持了人物的一致性。

对于要制作小说推文、创建人物故事情节的创作,是一个非常好用且高效的功能。

准备工作

使用该控制类型,必须先下载2个模型:https://github.com/Mikubill/sd-webui-controlnet/discussions/2589

在这里插入图片描述

image-20240808110208000

并且按要求,分别将名称命名为:ip-adapter_instant_id_sdxl.bincontrol_instant_id_sdxl.safetensors

下载后存放位置:SD安装目录\extensions\sd-webui-controlnet\models

实操

SD模型必须选择 SDXL 大模型才可以使用,普通的 SD1.5 模型是无法使用的:

在这里插入图片描述

开启第1个 ControlNet 获取人脸效果(PS:确保 ControlNet 更新到最新的版本);

控制类型选择「Instat_ID」,预处理器选择「instant_id_face_embedding」;

模型选择「ip-adapter_instant_id_sdxl」(PS:如果没有显示,点击模型右侧的「刷新」按钮);

上传一张霉霉的图片,

上传图片的要求:

  • 正脸照

  • 人脸占整个画面的80%以上

获取图片分辨率,将「提示词引导系数」设置为4:

在这里插入图片描述

开启第2个 ControlNet 指定角度,

控制类型选择「Instat_ID」,预处理器选择「instant_id_face_keypoints」;

模型选择「control_instant_id_sdxl」(PS:如果没有显示,点击模型右侧的「刷新」按钮);

上传一张参考角度的图片,这张图片男女都可以,只为了获取人脸的角度

首次点击 💥 生成预览图片时,需要在后台下载相关的文件,较大概率会下载失败,可以直接复制下载链接,粘贴到浏览器上进行下载,再放置到指定的文件夹中即可

生成图片的效果如下:

在这里插入图片描述

目前 ControlNet 已经更新到 1.1 版本,相较于 1.0 版本,ControlNet1.1 新增了更多的预处理器和模型,每种模型对应不同的采集方式,再对应不同的应用场景,每种应用场景又有不同的变现空间

我花了一周时间彻底把ControlNet1.1的14种模型研究了一遍,跑了一次全流程,终于将它完整下载好整理成网盘资源。

其总共11 个生产就绪模型、2 个实验模型和 1 个未完成模型,现在就分享给大家,点击下方卡片免费领取。

在这里插入图片描述

img

1. 线稿上色

**方法:**通过 ControlNet 边缘检测模型或线稿模型提取线稿(可提取参考图片线稿,或者手绘线稿),再根据提示词和风格模型对图像进行着色和风格化。

**应用模型:**Canny、SoftEdge、Lineart。

Canny 示例:(保留结构,再进行着色和风格化)

img

2. 涂鸦成图

方法:通过 ControlNet 的 Scribble 模型提取涂鸦图(可提取参考图涂鸦,或者手绘涂鸦图),再根据提示词和风格模型对图像进行着色和风格化。

应用模型:Scribble。

Scribble 比 Canny、SoftEdge 和 Lineart 的自由发挥度要更高,也可以用于对手绘稿进行着色和风格处理。Scribble 的预处理器有三种模式:Scribble_hed,Scribble_pidinet,Scribble_Xdog,对比如下,可以看到 Scribble_Xdog 的处理细节更为丰富:

img

Scribble 参考图提取示例(保留大致结构,再进行着色和风格化):

img

3. 建筑/室内设计

**方法:**通过 ControlNet 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框(可提取参考图线条,或者手绘线条),再配合提示词和建筑/室内设计风格模型来生成图像。

**应用模型:**MLSD。

MLSD 示例:(毛坯变精装)

img

这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!

4. 颜色控制画面

**方法:**通过 ControlNet 的 Segmentation 语义分割模型,标注画面中的不同区块颜色和结构(不同颜色代表不同类型对象),从而控制画面的构图和内容。

**应用模型:**Seg。

Seg 示例:(提取参考图内容和结构,再进行着色和风格化)

img

如果还想在车前面加一个人,只需在 Seg 预处理图上对应人物色值,添加人物色块再生成图像即可。

img

5. 背景替换

**方法:**在 img2img 图生图模式中,通过 ControlNet 的 Depth_leres 模型中的 remove background 功能移除背景,再通过提示词更换想要的背景。

**应用模型:**Depth,预处理器 Depth_leres。

**要点:**如果想要比较完美的替换背景,可以在图生图的 Inpaint 模式中,对需要保留的图片内容添加蒙版,remove background 值可以设置在 70-80%。

Depth_leres 示例:(将原图背景替换为办公室背景)

img

6. 图片指令

**方法:**通过 ControlNet 的 Pix2Pix 模型(ip2p),可以对图片进行指令式变换。

应用模型:ip2p,预处理器选择 none。

**要点:**采用指令式提示词(make Y into X),如下图示例中的 make it snow,让非洲草原下雪。

Pix2Pix 示例:(让非洲草原下雪)

img

7. 风格迁移

**方法:**通过 ControlNet 的 Shuffle 模型提取出参考图的风格,再配合提示词将风格迁移到生成图上。

**应用模型:**Shuffle。

Shuffle 示例:(根据魔兽道具风格,重新生成一个宝箱道具)

img

8. 色彩继承

**方法:**通过 ControlNet 的 t2iaColor 模型提取出参考图的色彩分布情况,再配合提示词和风格模型将色彩应用到生成图上。

**应用模型:**Color。

Color 示例:(把参考图色彩分布应用到生成图上)

img

这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!
在这里插入图片描述

这里就简单说几种应用:

1. 人物和背景分别控制

2. 三维重建

3. 更精准的图片风格化

4. 更精准的图片局部重绘

以上就是本教程的全部内容了,重点介绍了controlnet模型功能实用,当然还有一些小众的模型在本次教程中没有出现,目前controlnet模型确实还挺多的,所以重点放在了官方发布的几个模型上。

同时大家可能都想学习AI绘画技术,也想通过这项技能真正赚到钱,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学,因为自身做副业需要,我这边整理了全套的Stable Diffusion入门知识点资料,大家有需要可以直接点击下边卡片获取,希望能够真正帮助到大家。

img

### ControlNet Instant 模型介绍 ControlNetStable Diffusion Web UI 的一种扩展插件,旨在通过引入额外的条件输入来增强图像生成的质量和可控性[^2]。具体来说,ControlNet 可以让使用者利用边缘检测、线稿图等多种类型的引导信息来进行更加精确的艺术创作。 对于 **ControlNet Instant** 模型而言,这是一种专门用于即时身份识别(Instant ID)的任务优化版本。此模型允许用户上传一张照片作为参考,并基于该图片快速生成具有相似特征的新图像。为了实现这一功能,除了常规训练外,还特别针对面部特征进行了微调处理,从而提高了人脸重建的真实性和准确性[^1]。 ### 使用方法 要使用 ControlNet Instant 模型,需按照如下方式操作: #### 下载必要文件 首先需要从指定仓库下载两个主要组件——`config.json` 和 `diffusion_pytorch_model.safetensors` 文件[^3]。这些资源通常位于 GitHub 上的相关项目页面内,例如 InstantID 或者其他提供 ControlNet 支持的地方。 #### 配置环境 接着,在所使用的 AI 绘画工具中找到对应的加载节点位置,通常是类似于 `ComfyUI/custom_nodes/ComfyUI-InstantID/checkpoints/controlnet` 这样的路径下。确保已正确安装并配置好所有依赖项和服务端口设置。 #### 执行任务 最后一步是在界面里选择合适的参数选项,比如分辨率大小、风格偏好等,然后提交请求等待结果返回即可完成一次完整的流程体验[^4]。 ```python import torch from diffusers import StableDiffusionControlNetPipeline, ControlNetModel controlnet = ControlNetModel.from_pretrained( "path_to_controlnet_instant" ) pipeline = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet ).to("cuda") output_image = pipeline(prompt="a photo of someone with glasses").images[0] output_image.save("./result.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值