如何实现Anaconda与uv最佳协同工作?

作者:算力魔方创始人/英特尔创新大使刘力

众所周知,Anaconda是老牌的Python环境管理和包管理工具,个人版免费,超过200人的企业需要购买商业授权;uv是一个新兴的极致高效的Python包管理和项目管理工具,用Rust编写,允许用户选择MIT License的方式使用。

作为开发者个人,我们如何适应这一趋势,让Anaconda与uv最佳协同工作呢?经过笔者大量的实践,发现可以通过‌环境隔离+混合管理‌的方式实现协同工作,具体步骤如下:

第一步:Anaconda创建一个专门服务的uv的虚拟环境,利用Anaconda处理CUDA驱动、MKL数学库等非Python依赖:

conda create -n myuv python=3.11conda activate myuv

第二步:在“myuv”虚拟环境中安装uv。

pip install uv

第三步:用uv安装Python包,感受极致高效。

uv pip install fastmcp

作为个人用户,在conda虚拟环境中使用uv,是一种简单有效且实用的方式。


如果你有更好的文章,欢迎投稿!

稿件接收邮箱:nami.liu@pasuntech.com

更多精彩内容请关注“算力魔方®”!

如果你已经有了独立安装的Jupyter Notebook,并希望Anaconda集成以便更好地管理共享资源,可以采取以下步骤: 1. **添加Anaconda路径**: - 打开命令行终端或PowerShell,确保系统环境变量中包含了Anaconda的bin目录,这样可以在任何地方通过`anaconda`或`conda`命令访问其工具。 2. **创建虚拟环境**: - 使用`conda create`命令创建一个新的虚拟环境,指定名称(例如myenv),并安装Jupyter Notebook其他你需要的库。 ```shell conda create -n myenv jupyter notebook numpy pandas ``` 3. **激活虚拟环境**: - 激活虚拟环境,然后所有的命令将在这个环境中执行。 ```shell conda activate myenv ``` 4. **安装notebook server**: - 如果你的Jupyter Notebook是独立安装并且不是基于Anaconda的,你可以选择将Anaconda的notebook服务器(`jupyter-server-proxy`)添加到你的Jupyter Notebook配置中,以便它可以代理到Anaconda的Kernels。 5. **启动Jupyter Notebook**: - 使用`jupyter notebook`命令,它会自动识别你的虚拟环境对应的Kernel。 6. **共享协作**: - Anaconda Navigator可以帮助你在一个界面下管理多个虚拟环境项目,包括启动Jupyter Notebook服务。你也可以使用`jupyter lab`替代经典笔记本模式,提供更多的交互式功能。 记住,为了保持环境整洁,建议每次完成项目后都激活相应的环境并退出,以防意外修改全局安装的库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值