LR
▐ 算法原理
逻辑回归LR(Logistic Regression)模型作为经典的机器学习分类模型,以其可解释性强、实现简单、线上高效等优点在线上应用中被大量使用。逻辑回归模型主要有两部分构成:
-
线性回归
-
逻辑函数
在机器学习中,线性回归模型可记为:
而逻辑函数使用的为sigmoid函数:
由(1)和(2)可推出LR模型的数学表达式为
在线性回归模型(1)中,是具体的某一个特征值,是该特征值的权重,是模型的输出。该公式可以直白的解释为模型的输出结果是由输入进行线性加权求和得到的。而逻辑函数(2)的作用是将线性回归模型的输出映射到[0,1],输出一个概率值。商品推荐的场景中如用户对某个item进行点击记为1,未点击记为0。
▐ 解决的问题
LR是一个基本的回归模型,可以对输入进行一些线性运算得到一个预测的输出值。预测值可以是用户点击某个商品的概率,也可以是用户下单的概率,其含义具体业务具体分析。
FM
▐ 算法原理
FM(Factorization Machine)。LR作为一个基础的回归模型,主要原理是通过对各个特征进行线性加权得到预测值,但是其并没有考虑组合特征对模型的影响,比如一名单身女性在晚上观看李佳琦直播概率显然是大于一名妈妈的,这里面包含的组合特征单身女性-晚上在LR中就体现不到。因此相比LR仅对一阶特征进行建模,FM引入了二阶特征,增强了模型的学习能力和表达能力。
FM的数学表达式如下:
如果FM仅仅是在模型的表达式上加入了二阶特征,它的应用绝不会这么广泛,只从式(4)中就可以看出表达式上其实相对于LR的改进是很简单的:在模型中引入输入特征两两组合进行乘积就行了。但是这样会引入一个很大的问题:参数的数目直接从个爆炸增长为个,这对于特征维度动辄上千上万数量级的推荐系统来说是断然不能接受的。
面对这么大的参数矩阵很容易想到将其进行矩阵分解,我们首先观察一下参数矩阵