最优化 | 人工智能中的常见范数 | 距离(欧氏距离等)和相似度的度量(余弦相似度)

范数和距离

在某些情况下,可以通过范数来定义距离。例如,对于向量空间 R d \mathbb{R}^d Rd,可以通过范数 ∥ ⋅ ∥ \Vert ·\Vert 定义距离。
范数是测量单个向量大小的工具,而距离是测量两个点或向量之间间隔的工具。通过范数可以定义距离,但距离的概念更加广泛,涵盖了更为复杂和多样的度量方法。
接下来讨论的情况都是通过范数定义距离

距离度量函数 d ( ⋅ , ⋅ ) d(·,·) d(⋅,⋅)必须满足以下的性质:

  1. 非负性: ( x , y ) ≥ 0 , ∀ x , y (\boldsymbol{x},\boldsymbol{y}) \geq 0, \forall \boldsymbol{x},\boldsymbol{y} (x,y)0,x,y
  2. 自反性: d ( x , y ) = 0 , 当且仅当 x = y d(\boldsymbol{x},\boldsymbol{y}) = 0, 当且仅当\boldsymbol{x}=\boldsymbol{y} d(x,y)=0,当且仅当x=y
  3. 对称性: d ( x , y ) = d ( y , x ) , ∀ x , y d(\boldsymbol{x},\boldsymbol{y})=d(\boldsymbol{y},\boldsymbol{x}), \forall \boldsymbol{x},\boldsymbol{y} d(x,y)=d(y,x),x,y
  4. 三角不等式: d ( x , y ) + d ( y , z ) ≥ d ( x , z ) , ∀ x , y , z d(\boldsymbol{x},\boldsymbol{y})+d(\boldsymbol{y},\boldsymbol{z}) \geq d(\boldsymbol{x},\boldsymbol{z}), \forall \boldsymbol{x},\boldsymbol{y},\boldsymbol{z} d(x,y)+d(y,z)d(x,z),x,y,z

其中: x = ( x 1 , . . . , x d ) , y = ( y 1 , . . . , y d ) \boldsymbol{x} =(x_1,...,x_d), \quad \boldsymbol{y}=(y_1,...,y_d) x=(x1,...,xd),y=(y1,...,yd)

闵可夫斯基度量(Minkowski metric)

l p ( x , y ) = ( ∑ i = 1 d ∣ x i − y i ∣ p ) 1 / p , p ≥ 1 \mathcal{l}_p(\boldsymbol{x},\boldsymbol{y})=(\sum_{i=1}^{d}|x_i-y_i|^p)^{1/p},\quad p \geq 1 lp(x,y)=(i=1dxiyip)1/p,p1

欧氏距离(Euclidean distance) | l 2 范数 \mathcal{l}_2范数 l2范数

闵可夫斯基度量 p = 2 p=2 p=2时:
l 2 ( x , y ) = ( ∑ i = 1 d ∣ x i − y i ∣ 2 ) 1 / 2 = ∥ x − y ∥ 2 \mathcal{l}_2(\boldsymbol{x},\boldsymbol{y})=(\sum_{i=1}^{d}|x_i-y_i|^2)^{1/2}=\Vert \boldsymbol{x}-\boldsymbol{y} \Vert_2 l2(x,y)=(i=1dxiyi2)1/2=xy2

曼哈顿距离(Manhattan distance) | l 1 范数 \mathcal{l}_1范数 l1范数

闵可夫斯基度量 p = 1 p=1 p=1时:
l 1 ( x , y ) = ∑ i = 1 d ∣ x i − y i ∣ = ∥ x − y ∥ 1 \mathcal{l}_1(\boldsymbol{x},\boldsymbol{y})=\sum_{i=1}^{d}|x_i-y_i|=\Vert \boldsymbol{x}-\boldsymbol{y} \Vert_1 l1(x,y)=i=1dxiyi=xy1

切比雪夫距离(Chebyshev distance) | l ∞ 范数 \mathcal{l}_\infty范数 l范数

闵可夫斯基度量 p = ∞ p=\infty p=时:
l ∞ ( x , y ) = max ⁡ i = 1 , . . . , d ∣ x i − y i ∣ = ∥ x − y ∥ ∞ \mathcal{l}_{\infty}(\boldsymbol{x},\boldsymbol{y})=\underset{i=1,...,d}{\max}|x_i-y_i|=\Vert \boldsymbol{x}-\boldsymbol{y} \Vert_{\infty} l(x,y)=i=1,...,dmaxxiyi=xy

红色是欧氏距离
橙色是曼哈顿距离
绿色是切比雪夫距离

在这里插入图片描述

马氏距离 (Mahalanobis distance)

d ( x , y ) = ( x − y ) T S − 1 ( x − y ) d(\boldsymbol{x},\boldsymbol{y})= \sqrt{(\boldsymbol{x}-\boldsymbol{y})^T S^{-1}(\boldsymbol{x}-\boldsymbol{y})} d(x,y)=(xy)TS1(xy)
马氏距离考虑了数据分布的协方差矩阵 S S S,对高维数据和不同尺度的数据具有较好的鲁棒性。

相似度

余弦相似度(Cosine Similarity) | 夹角余弦

S i m i ( x , y ) = cos ⁡ θ = x T y ∥ x ∥ 2 ⋅ ∥ y ∥ 2 = ∑ i = 1 d x i y i ∑ i = 1 d ∣ x i ∣ 2 ⋅ ∑ i = 1 d ∣ y i ∣ 2 Simi(\boldsymbol{x},\boldsymbol{y})= \cos \theta=\frac{\boldsymbol{x}^T\boldsymbol{y}}{\Vert \boldsymbol{x} \Vert_2 \cdot \Vert \boldsymbol{y} \Vert_2 }=\frac{\sum_{i=1}^dx_iy_i}{\sqrt{\sum_{i=1}^d|x_i|^2} \cdot \sqrt{\sum_{i=1}^d|y_i|^2} } Simi(x,y)=cosθ=x2y2xTy=i=1dxi2 i=1dyi2 i=1dxiyi
夹角越小,余弦值越接近1,表明两个向量越相似。相比距离度量函数,余弦相似度更注重两个向量在方向上的差异,而不关注向量的长度。

杰卡德相似度 (Jaccard Similarity):

sim ( A , B ) = ∣ A ∩ B ∣ ∣ A ∪ B ∣ \text{sim}(A,B) = \frac{|A \cap B|}{|A \cup B|} sim(A,B)=ABAB
杰卡德相似度用于衡量两个集合之间的相似度,范围在 [0, 1] 之间。

皮尔逊相关系数 (Pearson Correlation Coefficient)

ρ x , y = cov ( x , y ) σ x σ y \rho_{\boldsymbol{x},\boldsymbol{y}} = \frac{\text{cov}(\boldsymbol{x},\boldsymbol{y})}{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}} ρx,y=σxσycov(x,y)
皮尔逊相关系数适用于度量两个连续变量之间的关系强度和方向,范围在 [-1, 1] 之间。对于数据分布要求,理想情况下,变量应服从正态分布,但在实际应用中,这一要求常常被放宽。当你想要检验两个变量之间是否存在线性关系时,计算皮尔逊相关系数是一个很有用的方法。

  • 1 表示完全正相关:即一个变量增加,另一个变量也按相同比例增加。
  • -1 表示完全负相关:即一个变量增加,另一个变量按相同比例减少。
  • 0 表示没有线性相关:即一个变量的变化并不会导致另一个变量系统性的变化。
  • 11
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值