曼哈顿距离(L1范数)& 欧式距离(L2范数)区别

特征空间中两个实例点的距离是两个实例点相似程度的反映。特征空间一般是n维实数向量空间 R n \bold R^n Rn(即欧式空间)。使用的距离是欧式距离,但也可以是其他距离,如更一般的 L p L_p Lp距离( L p   d i s t a n c e L_p\space distance Lp distance)或Minkowski距离。

设特征空间 χ \chi χ是n维实数向量空间 R n \bold R^n Rn x i , x j ∈ χ , x l = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) T , x j = ( x j ( 1 ) , x j ( 2 ) , . . . , x j ( n ) ) T x_i,x_j\in \chi, \quad x_l=(x_i^{(1)},x_i^{(2)},...,x_i^{(n)})^T,x_j=(x_j^{(1)},x_j^{(2)},...,x_j^{(n)})^T xi,xjχ,xl=(xi(1),xi(2),...,xi(n))Txj=(xj(1),xj(2),...,xj(n))T x i , x j x_i,x_j xi,xj L p L_p Lp距离定义为
L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_p(x_i,x_j)=(\sum_{l=1}^n|x_i^{(l)}-x_j^{(l)}|^p)^{\frac{1}{p}} Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1
这里 p ≥ 1 p\geq 1 p1。当 p = 2 p=2 p=2时,称为欧氏距离(Euclidean distance),即
L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_2(x_i,x_j)=(\sum_{l=1}^n|x_i^{(l)}-x_j^{(l)}|^2)^{\frac{1}{2}} L2(xi,xj)=(l=1nxi(l)xj(l)2)21
p = 1 p=1 p=1时,称为曼哈顿距离(Manhattan distance),即
L 1 ( x i , x j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_1(x_i,x_j)=\sum_{l=1}^n|x_i^{(l)}-x_j^{(l)}| L1(xi,xj)=l=1nxi(l)xj(l)
p = ∞ p=\infty p=时,它是各个坐标距离的最大值,即
L ∞ ( x i , x j ) = m a x l ∣ x i ( l ) − x j ( l ) ∣ L_{\infty}(x_i,x_j)=max_{l}|x_i^{(l)}-x_j^{(l)}| L(xi,xj)=maxlxi(l)xj(l)
下图是二维空间p取不同值时,与原点的 L p L_p Lp距离为1( L p = 1 L_p=1 Lp=1)的图形。

参考资料:
《统计学习方法》

  • 4
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值