机器学习中常用范数与距离

本文介绍了机器学习中常见的范数和距离概念,包括向量范数、矩阵范数及其不同类型的范数,如1范数、2范数、∞范数等。同时,详细阐述了距离的概念,如曼哈顿距离、欧氏距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离、余弦距离、相关距离、汉明距离和杰卡德类似系数。这些范数和距离在模型优化、特征选择和相似性度量等方面具有重要作用。
摘要由CSDN通过智能技术生成

前言

在机器学习中经常会涉及到范数和距离的概念,有时候优化的目标函数就是常用范数和距离的变化。关于范数和距离其实已经有很多人写过文章了,我之所以还要再写一遍,是因为读别人的文章我老是记不住,干脆好记性不如烂键盘,自己敲一遍吧。


范数

向量范数

向量范数表示向量空间中向量的大小。
n n n维实空间 R n R^n Rn中的向量 X = ( x 1 , x 2 , . . . , x n ) T \mathbf X = (x_1, x_2, ..., x_n)^T X=(x1,x2,...,xn)T的范数记作 ∥ X ∥ \Vert \mathbf X \Vert X,该范数是一个实数,且满足以下三条性质:
(1) 非负性: ∥ X ∥ ≥ 0 \Vert \mathbf X \Vert \geq 0 X0,当且仅当 X = 0 \mathbf X = \mathbf 0 X=0 ∥ X ∥ = 0 \Vert \mathbf X \Vert = 0 X=0
(2) 齐次性:对任意实数 λ \lambda λ ∥ λ X ∥ \Vert \lambda \mathbf X\Vert λX = ∣ λ ∣ ∥ X ∥ |\lambda| \Vert \mathbf X \Vert λX
(3) 三角不等式:对任意向量 Y ∈ R n \mathbf Y \in R^n YRn ∥ X + Y ∥ ≤ ∥ X ∥ + ∥ Y ∥ \Vert \mathbf X + \mathbf Y \Vert \leq \Vert \mathbf X \Vert + \Vert \mathbf Y \Vert X+YX+Y

  • 1范数
    ∥ X ∥ 1 = ∑ i = 1 n ∣ x i ∣ = ∣ x 1 ∣ + ∣ x 2 ∣ + . . . + ∣ x n ∣ {\Vert \mathbf X \Vert}_1 = \sum_{i=1}^n {|x_i|} = |x_1| + |x_2| + ... +|x_n| X1=i=1nxi=x1+x2+...+xn
  • 2范数
    ∥ X ∥ 2 = ∑ i = 1 n x i 2 = x 1 2 + x 2 2 + . . . + x n 2 {\Vert \mathbf X \Vert}_2 = \sqrt {\sum_{i=1}^n {x_i}^2} = \sqrt { {x_1}^2 + {x_2}^2 + ... +{x_n}^2} X2=i=1nxi2 =x12+x22+...+xn2
  • ∞ 范 数 \infty范数
    ∥ X ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ {\Vert \mathbf X \Vert}_\infty = \max_{1\leq i \leq n} |x_i| X=1inmaxxi
  • p p p范数
    ∥ X ∥ p = ∑ i = 1 n ∣ x i ∣ p p {\Vert \mathbf X \Vert}_p = \sqrt[p] {\sum_{i=1}^n |x_i|^p} Xp=pi=1nxip
    其中,前三种范数都是 p p p范数的特殊情况,或者可以说 p p p范数不是一个单纯的范数,而是一组范数的表示。
    需要注意的是,当 p ≥ 1 p \geq 1 p1时,各个范数是满足三角不等式的,而当 0 ≤ p &lt; 1 0 \leq p \lt 1 0p<1时,范数是不满足三角不等式的,此时的范数只是一种概念表示。
    比如0范数用 p p p范数的计算公式表示为如下形式:
    ∥ X ∥ 0 = ∑ i = 1 n ∣ x i ∣ 0 0 {\Vert \mathbf X \Vert}_0 = \sqrt[0] {\sum_{i=1}^n |x_i|^0} X0=0i=1nxi0
    这样表示的问题在于,当 x i = 0 x_i = 0 xi=0时, 0 0 0^0 00 是没有意义的,同样开零次方也是没有意义的。一般我们实际使用的0范数指向量中的非零元素个数。
    另外,对于 ∞ \infty 范数,它实际是通过以下公式计算得来的:
    ∥ X ∥ ∞ = lim ⁡ p → ∞ ∥ X ∥ p {\Vert \mathbf X \Vert}_\infty = \lim_{p \rightarrow \infty} {\Vert \mathbf X \Vert}_p X=plimXp
    在实际应用中,1范数可以实现特征的稀疏,去掉一些无用信息;2范数通常用作目标函数的正则化项,防止过拟合,提高模型的泛化能力。1范数和2范数可以度量两个向量之间的差异,而 ∞ \infty 范数用来度量向量元素的最大值。

矩阵范数

矩阵范数表示矩阵变换引起的变化大小。
若有 n × n n \times n n×n的矩阵 A \mathbf A A A ∈ R n × n \mathbf A \in R^{n \times n} ARn×n)以及 n n n维实空间 R n R^n Rn中的向量 X \mathbf X X,称
∥ A ∥ = max ⁡ X ∈ R n , ∥ X ∥ = ̸ 0 ∥ A X ∥ ∥ X ∥ = max ⁡ ∥ X ∥ = 1 , X ∈ R n ∥ A X ∥ \Vert \mathbf A \Vert = \max_{\mathbf X \in R^n, {\Vert \mathbf X \Vert} = \not 0} \frac{\Vert \mathbf {AX} \Vert}{\Vert \mathbf X \Vert} = \max_{\Vert \mathbf X \Vert = 1, \mathbf X \in R^n} \Vert \mathbf {AX} \Vert A=XRn,X≠0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值