YOLOv8断点恢复、减少训练轮数、提前终止_yolov8未到200轮结束

本文介绍了如何在YOLOv8训练过程中通过修改配置实现断点恢复,减少训练轮数,并在达到理想效果时提前终止训练。主要修改包括调整train文件的epochs参数,保存模型路径,以及在trainer.py中处理恢复和检查点。作者分享了个人的编程经验和资源,提供了一套完整的Python开发学习资料。
摘要由CSDN通过智能技术生成

训练的时候,发现epochs设置多了,训练中途发现收敛效果还可以,不用继续跑太多轮,于是想缩减epochs。但没找到解决的帖子…

修改步骤:

1.首先train文件的参数改一下:

  • opochs改成减少后的轮数,比如先前是200,这次改成100
  • model路径改成上次训练的last.pt
  • 为了防止路径错误,建议全部使用绝对路径,然后把"\“都换成”"
from ultralytics import YOLO


if __name__ == '\_\_main\_\_':

    model = YOLO("runs\\detect\\train\\weights\\last.pt")
    
    results = model.train(data="C:\\Users\\Administrator\\Desktop\\ultralytics-main\\ultralytics-main\\ultralytics\\datasets\\mask\\data.yaml", epochs=100, batch=4, workers=2, resume=True, device=0)

2. 在trainer.py的__init__() 构造函数里,先用一个变量接收config的epochs

    def \_\_init\_\_(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值