AlexNet补充

对上篇文章的补充

激活函数

sigmoid和tanh是饱和的激活函数,会造成梯度消失的问题,学习速率降低

把模型并行的放在两个GPU上

overlapping pooling

文章认为这种方法可以防止过拟合

减少过拟合之数据增强(增加图片的数量,参与训练)

        1、对一张图片进行裁剪,平移转换等,一张图片可以变为很多张图片

        2、随图片的颜色和 光照等进行随机的变换,一张图会变成很多张图。(使用到了PCA分析)

减少过拟合之dropout

每一个神经元有50%的概率被随机掐死,即随机阻断该神经元的前向和反向传播,那么每一个神经元与其它的神经元的合作就是随机的,打破了他们的联合依赖适应性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值