对上篇文章的补充
激活函数
sigmoid和tanh是饱和的激活函数,会造成梯度消失的问题,学习速率降低
把模型并行的放在两个GPU上
overlapping pooling
文章认为这种方法可以防止过拟合
减少过拟合之数据增强(增加图片的数量,参与训练)
1、对一张图片进行裁剪,平移转换等,一张图片可以变为很多张图片
2、随图片的颜色和 光照等进行随机的变换,一张图会变成很多张图。(使用到了PCA分析)
减少过拟合之dropout
每一个神经元有50%的概率被随机掐死,即随机阻断该神经元的前向和反向传播,那么每一个神经元与其它的神经元的合作就是随机的,打破了他们的联合依赖适应性。