如何将pytorch模型部署到安卓

}

dependencies {

implementation ‘org.pytorch:pytorch_android_lite:1.9.0’

implementation ‘org.pytorch:pytorch_android_torchvision:1.9.0’

}

注:pytorch_android_lite版本和转化模型用的版本要一致,不一致就会报各种错误。

目前用这种方法有点问题,我采用的另一种方法。

转化代码如下:

import torch

import torch.utils.data.distributed

pytorch环境中

model_pth = ‘model_31_0.96.pth’ #模型的参数文件

mobile_pt =‘model.pt’ # 将模型保存为Android可以调用的文件

model = torch.load(model_pth)

model.eval() # 模型设为评估模式

device = torch.device(‘cpu’)

model.to(device)

1张3通道224*224的图片

input_tensor = torch.rand(1, 3, 224, 224) # 设定输入数据格式

mobile = torch.jit.trace(model, input_tensor) # 模型转化

mobile.save(mobile_pt) # 保存文件

对应的包:

//pytorch

implementation ‘org.pytorch:pytorch_android:1.10.0’

implementation ‘org.pytorch:pytorch_android_torchvision:1.10.0’

定义模型文件和转化后的文件路径。

load模型。这里要注意,如果保存模型

torch.save(model,‘models.pth’)

加载模型则是

model=torch.load(‘models.pth’)

如果保存模型是

torch.save(model.state_dict(),“models.pth”)

加载模型则是

model.load_state_dict(torch.load(‘models.pth’))

定义输入数据格式。

模型转化,然后再保存模型。

安卓部署

===============================================================

新建项目


新建安卓项目,选择Empy Activity,然后选择Next

image-20220210142047786

然后,填写项目信息,选择安卓版本,我用的4.4,点击完成

image-20220210142213719

导入包


导入pytorch_android的包

//pytorch

implementation ‘org.pytorch:pytorch_android:1.10.0’

implementation ‘org.pytorch:pytorch_android_torchvision:1.10.0’

image-20220210142327206

如果有参数报错请参照我的完整的配置,代码如下:

plugins {

id ‘com.android.application’

}

android {

compileSdk 32

defaultConfig {

applicationId “com.example.myapplication”

minSdk 21

targetSdk 32

versionCode 1

versionName “1.0”

testInstrumentationRunner “androidx.test.runner.AndroidJUnitRunner”

}

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile(‘proguard-android-optimize.txt’), ‘proguard-rules.pro’

}

}

compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8

targetCompatibility JavaVersion.VERSION_1_8

}

}

dependencies {

implementation ‘androidx.appcompat:appcompat:1.3.0’

implementation ‘com.google.android.material:material:1.4.0’

implementation ‘androidx.constraintlayout:constraintlayout:2.0.4’

testImplementation ‘junit:junit:4.13.2’

androidTestImplementation ‘androidx.test.ext:junit:1.1.3’

androidTestImplementation ‘androidx.test.espresso:espresso-core:3.4.0’

//pytorch

implementation ‘org.pytorch:pytorch_android:1.10.0’

implementation ‘org.pytorch:pytorch_android_torchvision:1.10.0’

}

页面文件


页面的配置如下:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android=“http://schemas.android.com/apk/res/android”

xmlns:tools=“http://schemas.android.com/tools”

android:layout_width=“match_parent”

android:layout_height=“match_parent”

tools:context=“.MainActivity”>

<ImageView

android:id=“@+id/image”

android:layout_width=“match_parent”

android:layout_height=“match_parent”

android:scaleType=“fitCenter” />

<TextView

android:id=“@+id/text”

android:layout_width=“match_parent”

android:layout_height=“wrap_content”

android:layout_gravity=“top”

android:textSize=“24sp”

android:background=“#80000000”

android:textColor=“@android:color/holo_red_light” />

这个页面只有两个空间,一个展示图片,一个显示文字。

image-20220210142827091

模型推理


新增assets文件夹,然后将转化的模型和待测试的图片放进去。

image-20220210143351535

新增ImageNetClasses类,这个类存放类别名字。

image-20220210143105326

代码如下:

package com.example.myapplication;

public class ImageNetClasses {

public static String[] IMAGENET_CLASSES = new String[]{

“Black-grass”,

“Charlock”,

“Cleavers”,

“Common Chickweed”,

“Common wheat”,

“Fat Hen”,

“Loose Silky-bent”,

“Maize”,

“Scentless Mayweed”,

“Shepherds Purse”,

“Small-flowered Cranesbill”,

“Sugar beet”,

};

}

在MainActivity类中,增加模型推理的逻辑。完成代码如下:

package com.example.myapplication;

import android.content.Context;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.Bundle;

import android.util.Log;

import android.widget.ImageView;

import android.widget.TextView;

import org.pytorch.IValue;

import org.pytorch.Module;

import org.pytorch.Tensor;

import org.pytorch.torchvision.TensorImageUtils;

import org.pytorch.MemoryFormat;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

最后

其实Android开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。

当然我也为你们整理好了百度、阿里、腾讯、字节跳动等等互联网超级大厂的历年面试真题集锦。这也是我这些年来养成的习惯,一定要学会把好的东西,归纳整理,然后系统的消化吸收,这样才能极大的提高学习效率和成长进阶。碎片、零散化的东西,我觉得最没有价值的。就好比你给我一张扑克牌,我只会觉得它是一张废纸,但如果你给我一副扑克牌,它便有了它的价值。这和我们收集资料就要收集那些系统化的,是一个道理。

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!
d开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。

当然我也为你们整理好了百度、阿里、腾讯、字节跳动等等互联网超级大厂的历年面试真题集锦。这也是我这些年来养成的习惯,一定要学会把好的东西,归纳整理,然后系统的消化吸收,这样才能极大的提高学习效率和成长进阶。碎片、零散化的东西,我觉得最没有价值的。就好比你给我一张扑克牌,我只会觉得它是一张废纸,但如果你给我一副扑克牌,它便有了它的价值。这和我们收集资料就要收集那些系统化的,是一个道理。

[外链图片转存中…(img-D0MYTimI-1715246538576)]

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值