}
dependencies {
implementation ‘org.pytorch:pytorch_android_lite:1.9.0’
implementation ‘org.pytorch:pytorch_android_torchvision:1.9.0’
}
注:pytorch_android_lite版本和转化模型用的版本要一致,不一致就会报各种错误。
目前用这种方法有点问题,我采用的另一种方法。
转化代码如下:
import torch
import torch.utils.data.distributed
pytorch环境中
model_pth = ‘model_31_0.96.pth’ #模型的参数文件
mobile_pt =‘model.pt’ # 将模型保存为Android可以调用的文件
model = torch.load(model_pth)
model.eval() # 模型设为评估模式
device = torch.device(‘cpu’)
model.to(device)
1张3通道224*224的图片
input_tensor = torch.rand(1, 3, 224, 224) # 设定输入数据格式
mobile = torch.jit.trace(model, input_tensor) # 模型转化
mobile.save(mobile_pt) # 保存文件
对应的包:
//pytorch
implementation ‘org.pytorch:pytorch_android:1.10.0’
implementation ‘org.pytorch:pytorch_android_torchvision:1.10.0’
定义模型文件和转化后的文件路径。
load模型。这里要注意,如果保存模型
torch.save(model,‘models.pth’)
加载模型则是
model=torch.load(‘models.pth’)
如果保存模型是
torch.save(model.state_dict(),“models.pth”)
加载模型则是
model.load_state_dict(torch.load(‘models.pth’))
定义输入数据格式。
模型转化,然后再保存模型。
===============================================================
新建安卓项目,选择Empy Activity,然后选择Next
然后,填写项目信息,选择安卓版本,我用的4.4,点击完成
导入pytorch_android的包
//pytorch
implementation ‘org.pytorch:pytorch_android:1.10.0’
implementation ‘org.pytorch:pytorch_android_torchvision:1.10.0’
如果有参数报错请参照我的完整的配置,代码如下:
plugins {
id ‘com.android.application’
}
android {
compileSdk 32
defaultConfig {
applicationId “com.example.myapplication”
minSdk 21
targetSdk 32
versionCode 1
versionName “1.0”
testInstrumentationRunner “androidx.test.runner.AndroidJUnitRunner”
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile(‘proguard-android-optimize.txt’), ‘proguard-rules.pro’
}
}
compileOptions {
sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8
}
}
dependencies {
implementation ‘androidx.appcompat:appcompat:1.3.0’
implementation ‘com.google.android.material:material:1.4.0’
implementation ‘androidx.constraintlayout:constraintlayout:2.0.4’
testImplementation ‘junit:junit:4.13.2’
androidTestImplementation ‘androidx.test.ext:junit:1.1.3’
androidTestImplementation ‘androidx.test.espresso:espresso-core:3.4.0’
//pytorch
implementation ‘org.pytorch:pytorch_android:1.10.0’
implementation ‘org.pytorch:pytorch_android_torchvision:1.10.0’
}
页面的配置如下:
<?xml version="1.0" encoding="utf-8"?><FrameLayout xmlns:android=“http://schemas.android.com/apk/res/android”
xmlns:tools=“http://schemas.android.com/tools”
android:layout_width=“match_parent”
android:layout_height=“match_parent”
tools:context=“.MainActivity”>
<ImageView
android:id=“@+id/image”
android:layout_width=“match_parent”
android:layout_height=“match_parent”
android:scaleType=“fitCenter” />
<TextView
android:id=“@+id/text”
android:layout_width=“match_parent”
android:layout_height=“wrap_content”
android:layout_gravity=“top”
android:textSize=“24sp”
android:background=“#80000000”
android:textColor=“@android:color/holo_red_light” />
这个页面只有两个空间,一个展示图片,一个显示文字。
新增assets文件夹,然后将转化的模型和待测试的图片放进去。
新增ImageNetClasses类,这个类存放类别名字。
代码如下:
package com.example.myapplication;
public class ImageNetClasses {
public static String[] IMAGENET_CLASSES = new String[]{
“Black-grass”,
“Charlock”,
“Cleavers”,
“Common Chickweed”,
“Common wheat”,
“Fat Hen”,
“Loose Silky-bent”,
“Maize”,
“Scentless Mayweed”,
“Shepherds Purse”,
“Small-flowered Cranesbill”,
“Sugar beet”,
};
}
在MainActivity类中,增加模型推理的逻辑。完成代码如下:
package com.example.myapplication;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.util.Log;
import android.widget.ImageView;
import android.widget.TextView;
import org.pytorch.IValue;
import org.pytorch.Module;
import org.pytorch.Tensor;
import org.pytorch.torchvision.TensorImageUtils;
import org.pytorch.MemoryFormat;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
最后
其实Android开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。
当然我也为你们整理好了百度、阿里、腾讯、字节跳动等等互联网超级大厂的历年面试真题集锦。这也是我这些年来养成的习惯,一定要学会把好的东西,归纳整理,然后系统的消化吸收,这样才能极大的提高学习效率和成长进阶。碎片、零散化的东西,我觉得最没有价值的。就好比你给我一张扑克牌,我只会觉得它是一张废纸,但如果你给我一副扑克牌,它便有了它的价值。这和我们收集资料就要收集那些系统化的,是一个道理。
网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!
d开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。
当然我也为你们整理好了百度、阿里、腾讯、字节跳动等等互联网超级大厂的历年面试真题集锦。这也是我这些年来养成的习惯,一定要学会把好的东西,归纳整理,然后系统的消化吸收,这样才能极大的提高学习效率和成长进阶。碎片、零散化的东西,我觉得最没有价值的。就好比你给我一张扑克牌,我只会觉得它是一张废纸,但如果你给我一副扑克牌,它便有了它的价值。这和我们收集资料就要收集那些系统化的,是一个道理。
[外链图片转存中…(img-D0MYTimI-1715246538576)]
网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!