yolov8的部署,训练,测试(利用ultralytics)_yolov8n(1)

本文介绍了YOLOv8模型的部署、训练和测试过程。首先,通过新建.py文件并运行脚本来测试环境。接着,详细阐述了如何准备数据集,创建my.yaml配置文件,并在conda环境中进行模型训练。训练完成后,文章提到了验证模型性能的两种方法,但指出这一步可以省略。最后,作者分享了个人背景和提供了一套全面的Python开发学习资源。
摘要由CSDN通过智能技术生成

yolov8n.pt下载地址:yolov8n.pt

2. 新建.py文件进行环境测试

在路径下新建python脚本文件\ultralytics\demo.py,复制readme文档里面的python行,就像运行yolov5的模型一样,运行该脚本文件。

可以检测出自己的环境是否正确,使用yolov8自带经典图片进行测试

或者直接在anaconda的prompt中的终端环境下,运行:

yolo predict model=yolov8n.pt source=‘ultralytics/assets/bus.jpg’

保存在runs\detect\predict中,Results saved to 存放地址:

说明环境配置正确了。

3. 训练自己的模型,先创建dataset文件夹,创建my.yaml

yolo数据集格式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值