DeepSeek 本地部署指南(基于 vLLM)

本指南将详细介绍如何使用 vLLM 在本地部署 DeepSeek 语言模型。我们将以 deepseek-ai/DeepSeek-R1-Distill-Qwen-7B 模型为例,逐步指导你完成环境配置、模型下载、vLLM 安装及推理服务的启动与调用。


最近春招和实习已开启了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

喜欢本文记得收藏、关注、点赞


技术交流

在这里插入图片描述

1. 安装 Python 环境

在开始之前,你需要确保已安装 Python 环境。

图片

  • 访问 Python 官网:https://www.python.org/

  • 选择安装包:根据你的操作系统(Windows、macOS 或 Linux)下载并安装 Python。

  • 推荐版本:建议安装 Python 3.8 或更高版本。

  • 验证安装:安装完成后,打开终端(macOS/Linux)或命令提示符(Windows),输入以下命令以检查 Python 和 pip 是否安装成功:

  python --version
  pip --version

如果正确显示版本号,则说明 Python 环境已配置完成。

2. 下载 DeepSeek 模型

接下来,我们需要下载 deepseek-ai/DeepSeek-R1-Distill-Qwen-7B 模型。

图片

  • 模型地址:https://modelscope.cn/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

  • 安装 ModelScope:ModelScope 是一个模型中心,用于下载和管理模型。运行以下命令安装 ModelScope:

  pip install modelscope
  • 下载模型:使用以下命令下载模型并保存到本地:
  modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --local_dir /path/to/save/model

/path/to/save/model 替换为你希望保存模型的本地路径。

  • 磁盘空间:确保磁盘空间充足,该模型至少需要 15GB 的存储空间。

  • 关于 ModelScope:ModelScope 是一个开源社区,提供多种预训练模型。虽然某些模型可能需要注册账号,但 DeepSeek-R1-Distill-Qwen-7B 是公开的,可直接下载。

    图片

3. 安装 vLLM

vLLM 是一个高效的大型语言模型推理库,支持快速部署。

图片

  • vLLM 简介:vLLM GitHub[1]

  • 官方文档:vLLM 文档[2]

推荐使用虚拟环境:为避免包冲突,建议在虚拟环境中安装 vLLM。

  • 创建虚拟环境
python -m venv venv
  • 激活虚拟环境
# macOS/Linux:
source venv/bin/activate

# Windows:
venv\Scripts\activate
  • 安装 vLLM
  pip install vllm

4. 启动 vLLM 推理服务

模型下载完成后,可以使用 vLLM 启动推理服务。

启动命令

CUDA_VISIBLE_DEVICES=0 vllm serve /path/to/save/model --port 8102 --max-model-len 16384

参数说明:

  • CUDA_VISIBLE_DEVICES=0:指定使用的 GPU 设备 ID(0 表示第一块 GPU)。

  • /path/to/save/model:替换为模型的实际保存路径。

  • --port 8102:服务监听的端口号(可自定义)。

  • --max-model-len 16384:模型的最大上下文长度(可根据 GPU 显存调整)。

检查服务状态:启动后,终端会显示类似 INFO: Started server process 的信息。你也可以通过访问 http://localhost:8102/docs 查看 API 文档,验证服务是否正常运行。

GPU 显存:确保 GPU 显存充足。如果显存不足,可尝试减小 --max-model-len 的值。

5. 调用 vLLM 推理服务

服务启动后,可以通过代码调用 vLLM 提供的 API 进行推理。

Python 示例代码

from openai import OpenAI

# 配置 OpenAI API 密钥和 Base URL 以连接 vLLM 服务
openai_api_key = "EMPTY"# vLLM 服务不需要 API 密钥,可以使用任意字符串
openai_api_base = "http://localhost:8102/v1"  # 确保端口号与启动服务时一致

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

prompt = "你好,介绍一下你自己吧"  # 输入问题
response = client.completions.create(
    model="deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",  # 模型名称
    prompt=prompt,
    stream=False,  # 是否使用流式输出
)

print(response.choices[0].text)  # 输出模型回答

运行代码:将代码保存为 inference_example.py,然后在虚拟环境中运行:

python inference_example.py

注意事项

  • 确保 openai_api_base 中的端口号与 vLLM 服务端口一致。

  • 如果遇到错误,请检查服务状态、模型名称及网络连接。

  • vLLM 服务是否已成功启动并正在运行。

  • openai_api_base 中的端口号是否与 vLLM 服务端口号一致。

  • model 参数指定的模型名称是否正确。

  • 网络连接是否正常。

  • 查看 vLLM 服务端的日志输出,可能会有更详细的错误信息。

总结

通过以上步骤,你已成功在本地部署了 DeepSeek 模型,并能够通过 vLLM 进行推理。如果在部署过程中遇到问题,请参考 vLLM 官方文档或在相关社区寻求帮助。祝你使用愉快!

参考资料

[1]

vLLM GitHub: https://github.com/vllm-project/vllm

[2]

vLLM 文档: https://docs.vllm.ai/en/latest/

<think>好的,我现在需要回答用户关于DeepSeek本地部署的问题。首先,我得确认自己是否了解DeepSeek是什么。根据之前的对话,DeepSeek是一个专注实现AGI的中国公司,他们开源了DeepSeek-R1模型,并且可能涉及AI助手和搜索引擎技术。 用户想知道如何本地部署DeepSeek,所以我需要分步骤说明。可能需要先介绍本地部署的基本概念,然后具体到DeepSeek的步骤。需要确保信息准确,但可能因为DeepSeek的具体部署文档不明确,需要依赖常见的本地部署流程。 首先,本地部署通常需要下载模型、准备环境、安装依赖、运行模型。假设DeepSeek-R1是类似其他开源模型,比如LLaMA或Stable Diffusion,用户需要从GitHub或官网获取代码和模型权重。环境配置可能包括Python、PyTorch或TensorFlow,以及必要的库如Transformers。 然后,硬件要求是关键部分。大模型需要高性能GPU,显存要足够,比如至少16GB以上。用户可能需要NVIDIA显卡和CUDA支持。此外,存储空间也是一个考虑因素,模型文件可能很大,需要几十GB的空间。 接下来,步骤可能包括克隆仓库、安装依赖、下载模型、配置参数,最后运行示例代码或API。可能还需要处理许可证问题,确保遵守开源协议。 用户可能遇到的常见问题包括环境配置错误、依赖冲突、显存不足、模型加载失败等。需要建议查看日志、更新驱动、检查CUDA版本,或者调整批处理大小。 另外,可能还需要提到如何获取支持,比如GitHub Issues、论坛或官方文档。如果DeepSeek有特定的部署指南,最好直接引用,但假设没有的话,只能提供通用建议。 最后,总结本地部署的好处,如数据隐私、定制化,以及挑战,如硬件成本和技术门槛。确保用户了解可能的困难,并提供寻求帮助的途径。 需要注意避免错误信息,例如如果DeepSeek的模型不是开源的,或者部署方式不同,可能需要调整内容。但目前根据之前的信息,假设DeepSeek-R1是开源的,可以本地部署。需要确认这一点,但如果没有更多信息,只能基于常规情况回答。 可能还需要提到不同的模型版本,如7B、13B等,不同参数规模的模型对硬件的要求不同。例如,较小的模型可能在消费级GPU上运行,而更大的需要专业硬件。 最后,建议用户查阅官方文档获取最新和准确的部署指南,因为流程可能会更新,避免提供过时的信息。</think>DeepSeek(深度求索)是一家专注于实现AGI(通用人工智能)的中国公司,其开源了如**DeepSeek-R1**等模型。若你希望进行本地部署(即将模型部署在自己的服务器或设备上),通常需要以下步骤和注意事项: --- ### **1. 本地部署的核心条件** - **模型开源**:需确认目标模型(如DeepSeek-R1)是否已开源并提供下载。目前DeepSeek的部分模型已在GitHub等平台公开。 - **硬件要求**: - **GPU**:建议使用高性能显卡(如NVIDIA系列,显存≥16GB),以支持大模型推理。 - **内存与存储**:至少32GB内存,存储空间需足够存放模型文件(可能几十GB)。 - **软件环境**: - Python、PyTorch/TensorFlow、CUDA/cuDNN等深度学习框架及驱动。 - 依赖库:如Hugging Face Transformers、DeepSeek提供的特定工具包等。 --- ### **2. 一般部署流程** 1. **获取模型**: - 从GitHub或官方渠道下载模型权重(Checkpoints)及代码库。 - 示例:克隆仓库 `git clone https://github.com/deepseek-ai/deepseek-r1` 2. **配置环境**: - 创建Python虚拟环境,安装PyTorch等基础框架。 - 安装依赖:`pip install -r requirements.txt`(根据项目要求)。 3. **加载与运行模型**: - 使用Hugging Face接口或自定义脚本加载模型。 - 示例代码: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-r1-xxb") tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1-xxb") inputs = tokenizer("你好,DeepSeek!", return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0])) ``` 4. **部署为服务**(可选): - 使用FastAPI/Flask搭建API,或集成至现有系统。 --- ### **3. 常见问题与优化** - **显存不足**:可尝试量化(如FP16/INT8)、模型裁剪或使用推理优化库(如vLLM、DeepSpeed)。 - **速度慢**:启用CUDA加速、调整批处理大小(Batch Size)或使用TensorRT优化。 - **依赖冲突**:建议使用Docker容器化部署,隔离环境。 --- ### **4. 注意事项** - **许可证**:遵守模型的开源协议(如Apache 2.0、MIT),商用需确认合规性。 - **更新与支持**:关注官方GitHub的Issue和文档,及时获取修复和更新。 - **安全与隐私**:本地部署可避免数据外传,适合敏感场景,但需自行维护安全。 --- ### **5. 资源推荐** - **官方GitHub**:[deepseek-ai](https://github.com/deepseek-ai)(查看具体模型的部署指南) - **社区支持**:Hugging Face社区、知乎、技术论坛等。 如果需要更具体的指导,建议直接查阅目标模型的官方文档或联系DeepSeek团队获取支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值