自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 LKDN阅读

虽然 BSRN 在模型参数和计算方面取得了长足的进步,但过多的残差连接和复杂的注意力模块(例如对比注意力 (CCA) 和增强空间注意力 (ESA))导致模型计算效率低下。ConvDW−D(·) 和 ConvDW (·) 分别表示扩张深度卷积和深度卷积,⊗ 表示元素乘积运算, 通过将大型 17×17 卷积分解为 1×1 点卷积、深度 5×5 卷积和核大小为 5、扩张为 3 的深度扩张卷积。具体来说,在 1×1 点状卷积和 3×3 深度卷积上引入了可重新参数化的跳过连接。此外在核心模块上做出了改进。

2024-07-28 17:55:41 207

原创 服务器上运行tensorboard,在本地如何查看

ssh -L 160006:127.0.0.1:6006 username@服务器地址 -p 服务器端口。然后进入你的程序运行路径中。

2024-07-27 16:53:25 105

原创 BSRN阅读用于高效图像超分辨的Blueprint Separable Residual Network

最开始的LR输入被复制n次,沿通道方向连接在一起,然后经过BSC0onv提取浅层特征,论文在消融实验中没有介绍这样做的目的以及这样做的意义,然后把所有的卷积操作全部换成了BSConv,可以减少参数数量。BSConv是深度可分离卷积 (DSConv) 的逆版本。有论文表明,BSConv 在许多情况下表现更好,可以有效分离标准卷积。下面是该网络与其他代表网络的部分对比结果,还是相当优秀的。网络的细节如下,图画的还是很好的,一看就懂。RFDN的阅读可以参考我的另一篇博文。整体的基础是在RFDN上做的改进。

2024-07-27 14:55:27 248

原创 LSTM+Inception用于fNIRS数据的时间序列分类

该文章的采集数据的设备是商用连续波 fNIRS 图像系统(FOIRE-3000,日本京都岛津制作所),用该仪器测量了三种波长(780、805 和 830 nm)的近红外光吸收率,采样率为 7.14 Hz,然后根据 MBLL 将其转换为血流动力学参数。原文还对数据进行了噪声处理,将数据通过频率为 0.01-0.09 Hz 的 1000 阶有限脉冲响应 (FIR) 带通滤波器,但其实经过作者验证,效果并不是很好,反而很差,因此最好使用源数据进行实验,不要进行任何处理。这样的话就有七组实验作为对照。

2024-07-10 10:54:06 218

原创 如何查看自己电脑cp37,cp38,cp39

在终端使用如下代码即可看到。

2024-06-02 23:24:39 165

原创 时间序列分类研究综述

时间序列分类(TimeSeriesClassification,TSC)是时间序列分析中的关键任务之一。TSC旨在构建一个机器学习模型,用于预测连续有序的实值观测序列的类别标签。InceptionTime是很优秀的时间序列分类集成深度卷积神经网络,2020年的论文,有一些定义下面是两个公开的时间序列数据集,UCR是单变量时间序列数据集,UEA是多变量时间序列数据集使用的模型有卷积神经网络,循环神经网络,注意力机制。

2024-06-02 13:09:42 1497

原创 from torch_sparse import coalesce出问题解决

意思是我的pytorch的cuda版本是12.1,但是torch_sparse版本是11.8,因此不匹配。我这里首先把torch_sparse的版本升级为12.1试试。先找到pytorch对应版本,再找到另外两个包的版本。在控制台pip install xxxx.whl。其实控制台给出了错误信息提示。

2024-06-02 12:49:05 170

原创 from networkx.convert_matrix import from_numpy_matrix出问题解决

更换networkx的版本,我从3.3降到了2.8.8就可以了。

2024-06-02 12:15:17 131 1

原创 RFAN阅读

这是2020年的CVPR论文,与RFDN为同一作者。

2024-05-28 11:30:35 676

原创 RFDN阅读

信息蒸馏网络是目前最先进的方法之一,它采用通道分裂操作提取提取的特征。然而,这种操作如何帮助设计高效的SISR模型还不够清楚。在本文中,我们提出了特征蒸馏连接(FDC),它在功能上等同于通道分割操作,但更轻量和灵活。基于残差特征蒸馏网络,我们对信息多蒸馏网络(IMDN)进行了重新思考,提出了一种轻量级、精确的信息多蒸馏网络(RFDN)模型。RFDN使用多个特征蒸馏连接来学习更具判别性的特征表示。我们还提出了一个浅残差块(SRB)作为RFDN的主要构建块,这样网络可以从残差学习中获益最多,同时仍然足够轻量。

2024-05-23 17:06:12 357

原创 LDCASR

论文的出发点是对于SRDensenet的改进。得益于密集的连接块,SRDensenet在SISR中取得了优异的性能。尽管密集的连通结构可以提供丰富的信息,但也会引入冗余和无用的信息。为了解决这个问题,在本文中,我们提出了一种带有注意的单图像超分辨率轻量级密集连接方法(LDCASR),它采用注意机制来提取通道维度中的有用信息。特别是,我们提出了由密集注意块(DAB)组成的递归密集组(RDG),它可以通过借助密集连接和注意模块提取深层特征来获得更重要的表示,使我们的整个网络重视 了解更多高级功能信息。

2024-05-23 11:07:46 341

原创 IMDN阅读

前面的引言就不读了,说一说主要贡献1我们提出了一种轻量级信息多重蒸馏网络(IMDN),用于快速准确的图像超分辨率。得益于我们的信息多重蒸馏块 (IMDB) 和对比感知注意 (CCA) 层,我们通过适度数量的参数获得了有竞争力的结果(参见图 6)2我们提出了自适应裁剪策略(ACS),它允许网络包含下采样操作(例如步幅为 2 的卷积层)来处理任意大小的图像。采用该方案,在处理不定倍率SR的情况下,计算成本、内存占用和推理时间都可以大大减少。

2024-05-22 18:37:32 1899

原创 ShuffleMixer阅读

很多网络高度依赖堆叠更深或更复杂的模型来扩大感受野以提高性能。因此,所需的计算预算使得这些重型 SR 模型难以在实际应用中部署在资源受限的移动设备上。为了减轻繁重的SR模型,人们提出了各种方法来降低模型复杂性或加快运行时间,包括高效的操作设计,神经架构搜索、知识蒸馏和结构重新参数化方法。这些方法主要基于改进的小空间卷积或高级训练策略,而很少探索大核卷积。而且,它们大多关注效率指标之一,在实际资源受限的任务中表现不佳。

2024-05-20 17:40:25 270

原创 CFSR阅读

单图像超分辨率(SISR)的最新进展已经取得了显着的性能,但这些方法的计算成本对于在资源受限的设备上部署仍然是一个挑战。特别是对于基于 Transformer 的方法,此类模型中的自注意力机制带来了巨大的突破,同时带来了大量的计算成本。为了解决这个问题,引入了卷积变换层(ConvFormer)和基于ConvFormer的超分辨率网络(CFSR),它们为轻量级图像超分辨率任务提供了有效且高效的解决方案。

2024-05-18 11:08:37 1203

原创 DRCT阅读

给定的数据 X 在经过连续层时可能会导致信息丢失。从式(1)中我们认为,随着网络层数越深,信息流就越容易丢失。就 SISR 任务而言,总体目标是找到具有优化函数参数 θ 的映射函数 F,以最大化 HR 和 SR 图像之间的互信息。

2024-05-15 16:27:46 310

原创 EDSR阅读

本文提出了使用特定尺度的单尺度架构,和在单个模型中重建各种尺度的高分辨率图像的多尺度架构。

2024-04-23 09:44:37 352

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除