浅谈矩阵分解(2)-QR分解

目录

一.施密特正交化方法回顾:

二.如何进行QR分解呢?

2.1Givens方法(基于初等旋转变换)

2.2Householder方法(基于镜像变换)

三.QR分解的作用是什么呢?


一.施密特正交化方法回顾

 

上述是展开式

受此启发,我们进行矩阵方面的研究:

将系数向量βi前面的系数设为bij,可以得到如下等式,并反解出来αi

矩阵表达为:

进一步地,如果αi彼此线性无关,即A可逆,则有:

一般的 :QR分解(正交三角分解)是将一个矩阵表示为一个正交矩阵和一个上三角矩阵的乘积的形式。正交矩阵是指其转置矩阵等于其逆矩阵的矩阵,而上三角矩阵是指除了对角线及其以下的元素外,其余元素均为零的矩阵。

定理:设n阶实矩阵A可逆,则存在唯一地正交矩阵Q和主对角线元素全为正的上三角矩阵R,使得A=QR

(定理的背后由施密特正交化方法的支撑)

进一步的,如果αi(彼此线性无关)的个数小于n则可以扩充其作为一组基向量,得到一个矩阵A,将A可以进行QR分解.


二.如何进行QR分解呢?

但是,在实用方面考虑,一般不用施密特正交化方法,更常用的是Givens方法(基于初等旋转变换)和Householder方法(基于镜像变换)

2.1Givens方法(基于初等旋转变换)

介绍了初等旋转矩阵,接下来介绍Givens方法(基于初等旋转变换)


2.2Householder方法(基于镜像变换)

介绍这两种变换过后,接下来的思路与上文所讲的三角分解类似,都是让改变换(矩阵)不断去左乘向量,使其在不断变换过程中,变为上三角矩阵R即可


三.QR分解的作用是什么呢?

对于QR分解,由于Q是一个正交矩阵(酉矩阵),其左乘任意向量都不改变其长度,可以有效抑制计算过程中的误差积累.所以QR分解在数值计算中比较常用.

同时QR分解在最小二乘法和特征值计算等领域广泛应用。

上一讲:浅谈矩阵分解(1)-三角分解

下一讲:

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值