import tensorflow as tf
mnist = input_data.read_data_sets(“MNIST_data”,one_hot = True)/第一个参数是路径/
/创建默认的Interactive session,之后的运算默认跑在这个session中,不同的session中的运算和数据是相互独立的/
sess = tf.InteractiveSession()
/卷积神经网络有很多的权重和偏置需要创建,需要先定义好初始化函数,方便重复使用,越复杂的神经网络,初始化函数越复杂,也越重要。给权重制造一些随机的噪声打破完全对称,如截断的正态分布噪声,标准差设为0.1,给偏置增加小的正值,避免死亡节点/
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape = shape)
return tf.Variable(initial)
/定义卷积层和池化层的函数,tf.nn.conv2d是tensorflow中的2维卷积函数,参数中,x是输入,W是卷积的参数,如[5,5,1,32],前面两个数字代表卷积核的尺寸,第3个是通道(channel)的数量,如果是灰度单色,就是1,如果是RGB,就是3,最后一个数字代表卷积核的数量,即这个卷积核会提取多少类的特征。strides代表卷积模板移动的步长,都是1代表会划过图片的每一个点。padding代表边界的处理方式,SAME代表给边界加上padding,使输入和输出保持同样的尺寸。tf.nn.max_pool是tensorflow的最大池化函数,使用2X2的最大池化,将2X2的像素块将为1X1的,最大池化会保留原始像素块中灰度值最高的那个像素,即保留最显著特征/
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides = [1,1,1,1], padding = ‘SAME’)
def max_pool_2X2(x):
return tf.nn.max_pool(x, ksize = [1,2,2,1], strides = [1,2,2,1], passing = ‘SAME’)
/先创建输入数据的地方placeholder,第一个参数是数据类型,第二个[None, 784],代表tensor的shape,即数据尺寸。x是特征,y_是真实的label/
x = tf.placeholder(tf.float32, [None,784])
y_ = tf.placeholder(tf.float32, [None,10])
/卷积神经网络要用到空间结构信息,因此要把1维的输入向量转为2维的图片结构,即从1X784–>28X28,-1代表样本数量不固定,最后的1是指通道数量为1/
x_image = tf.reshape(x, [-1,28,28,1])
/定义第一个卷积层,ReLU为激活函数,进行非线性处理/
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2X2(h_conv1)
/定义第二个卷积层,卷积核数量变成了64,其他一样/
W_conv2 = weight_variable([5,5,1,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(x_image, W_conv2) + b_conv2)
h_pool2 = max_pool_2X2(h_conv2)
/前面使用两次2X2的最大池化,现在边长为之前的1/4,即28X28 --> 7X7,两次卷积之后,输出的tensor尺寸为7X7X64,使用tf.reshape函数对输出进行变形处理,转为1维向量,然后连接一个全连接层,隐含结点为1024,最后使用relu激活函数/
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2,[-1,7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)
/使用Dropout层,减轻过拟合/
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
/最后将dropout的输出连接到Softmax层,得到概率输出/
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
/定义损失函数cross_entropy,优化器使用Adam,学习速率为1e-4/
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
/定义评测准确率/
correct_prediction = tf.equal(tf.argmax(y_conv,1) tf.argmax(y_,1))
accuracy = tf.reduce.mean(tf.cast(correct_prediction, tf.float32))
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:前端)
前端面试题是我面试过程中遇到的面试题,每一次面试后我都会复盘总结。我做了一个整理,并且在技术博客找到了专业的解答,大家可以参考下:
由于篇幅有限,只能分享部分面试题,完整版面试题及答案可以【点击我】阅读下载哦~无偿分享给大家
感悟
由于篇幅有限,只能分享部分面试题,完整版面试题及答案可以【点击我】阅读下载哦~无偿分享给大家
感悟
春招面试的后期,运气和实力都很重要,自己也是运气比较好,为了回馈粉丝朋友们(毕竟自己也玩了这么久哈哈哈),整理个人感悟和总结以上。最后祝愿大家能够收获理想offer!!