Keras深度学习实战(1)——神经网络基础与模型训练过程详解

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

J ( θ ) = 1 m ∑ i = 1 m ( h ( x i ) − y i ) 2 J(\theta)=\frac 1 m \sum _{i=1} m(h(x_i)-y_i)2 J(θ)=m1​i=1∑m​(h(xi​)−yi​)2

其中, y i y_i yi​ 是实际值, h ( x ) h(x) h(x) 是我们对输入 x x x 进行变换以获得预测值 y y y 的网络模型, m m m 是输入数据集中的数据个数。

2.4.2 在分类(离散)变量预测中计算损失

当要预测的变量是离散变量时(也就是说,变量中只有几个类别),我们通常使用分类交叉熵损失函数。当要预测的变量具有两个不同的值时,损失函数为二分类交叉熵,而当要预测的变量具有多个不同的值时,损失函数为多分类交叉熵。

  • 二分类交叉熵公式如下:

( y l o g ( p ) + ( 1 − y ) l o g ( 1 − p ) ) (ylog§+(1−y)log(1−p)) (ylog§+(1−y)log(1−p))

  • 多分类交叉熵定义如下:

− ∑ i = 1 n y i l o g ( p n ) -\sum _{i=1} ^n y_i log(p_n) −i=1∑n​yi​log(pn​)

其中, y y y 是输入实际对应的真实值, p p p 是输出的预测值, n n n 是数据量的总数。

2.4.3 计算网络损失值

由于我们在以上示例中预测的结果是连续的,因此损失函数值是均方误差,其计算方法如下:

e r r o r = 1.23 5 2 = 1.52 error = 1.235^2 = 1.52 error=1.2352=1.52

2.5 使用 Python 实现网络前向传播

通过以上学习,我们知道了通过在输入数据之上执行以下步骤以在前向传播中可以得出误差值:

  1. 随机初始化权重

  2. 通过将输入值乘以权重来计算隐藏层节点值

  3. 对隐藏层值执行激活

  4. 将隐藏层值连接到输出层

  5. 计算平方误差损失

计算所有数据点的平方误差损失值:

import numpy as np

def feed_forward(inputs, outputs, weights):

pre_hidden = np.dot(inputs,weights[0])+ weights[1]

hidden = 1/(1+np.exp(-pre_hidden))

out = np.dot(hidden, weights[2]) + weights[3]

squared_error = (np.square(pred_out - outputs))

return squared_error

在前面的函数中,我们将输入变量值、权重(如果是第一次迭代,则随机初始化)以及数据集中的实际输出作为 feed_forward 函数的输入。

我们通过对输入和权重进行矩阵乘法来计算隐藏层的值。此外,将偏置值添加到隐藏层中:

pre_hidden = np.dot(inputs,weights[0])+ weights[1]

其中 weights[0] 是权重值,weights[1] 是偏置值,利用此权重和偏置就可以将输入层连接到隐藏层。计算隐藏层的值后,就可以在隐藏层的值上使用激活函数:

hidden = 1/(1+np.exp(-pre_hidden))

通过将隐藏层的输出乘以将隐藏层连接到输出的权重,然后在输出上添加偏置项,来计算隐藏层的输出:

pred_out = np.dot(hidden, weights[2]) + weights[3]

一旦计算出输出,我们就可以计算出每一输入的平方误差损失,如下所示:

squared_error = (np.square(pred_out - outputs))

在前面的代码中,pred_out 是预测输出,而 outputs 是输入应对应的实际输出。通过以上简单的步骤,我们便可以在网络前向传播时计算损失值。

3. 从零开始构建反向传播


在正向传播中,我们将输入层与隐藏层连接到输出层。 在反向传播中,我们使用相反的过程。 每次将神经网络中的每个权重进行少量更改。权重值的变化将对最终损失值(增加或减少的损失)产生影响,我们需要朝着减少损失的方向更新权重。通过每次轻微更新权重并测量权重更新导致的误差变化,我们可以完成以下操作:

  • 确定权重更新的方向

  • 确定权重更新的幅度

在实施反向传播之前,我们首先了解神经网络的另一重要概念:学习率。学习率有助于我们建立更稳定的算法。例如,在确定权重更新的大小时,我们不会一次性就对其进行大幅度更改,而是采取更谨慎的方法来缓慢地更新权重。这使模型获得更高的稳定性;在之后的学习中,我们还将研究学习率如何帮助提高稳定性。

更新权重以减少误差的整个过程称为梯度下降技术,随机梯度下降是将误差最小化的手段。更直观地讲,梯度代表差异(即实际值和预测值之间的差异),而下降则表示差异减小;随机代表选择随机样本进行训练,并据此做出决策。除了随机梯度下降外,还有许多其他优化技术可以用于减少损失值。之后的学习中,还将讨论不同的优化技术。

反向传播的工作原理如下:

  • 利用前向传播过程计算损失值。

  • 略微改变所有的权重。

  • 计算权重变化对损失函数的影响。

  • 根据权重更新是增加还是减少了损失值,在损失减少的方向上更新权重值。

对数据集中的所有数据执行 1 次训练过程(前向传播+反向传播),称为 1 个 epoch

为了进一步巩固我们对神经网络中反向传播的理解,让我们拟合一个已知的简单函数,查看如何得出权重。假设,待拟合函数为 y = 3 x y = 3x y=3x,我们期望得出权重值和偏置值(分别为 3 和 0)。

| x | 1 | 3 | 4 | 8 | 10 |

| — | — | — | — | — | — |

| y | 3 | 9 | 12 | 24 | 30 |

以上数据集可以表示为线性回归 y = a x + b y = ax + b y=ax+b,我们将尝试计算 a a a 和 b b b 的值(虽然我们已知它们分别是 2 和 0,但我们的目的是研究如何使用梯度下降获得这些值),将 a a a 和 b b b 参数随机初始化为 2.269 2.269 2.269 和 1.01 1.01 1.01 的值。接下来,我们将从零构建反向传播算法,以便清楚地了解如何在神经网络中计算权重。简单起见下,将构建一个没有隐藏层的简单神经网络。

  1. 初始化数据集,如下所示:

x = np.array([[1], [3], [4], [8], [10]])

y = np.array([[3], [9], [12], [24], [30]])

  1. 随机初始化权重和偏差值(在尝试确定 y = a x + b y = ax + b y=ax+b 方程中 a a a 和 b b b 的最优值时,只需要一个权重和一个偏置值):

w = np.array([[[2.269]], [[1.01]]])

  1. 定义神经网络并计算平方误差损失值:

import numpy as np

def feed_forward(inputs, outputs, weights):

out = np.dot(inputs, weights[0]) + weights[1]

squared_error = np.square(out - outputs)

return squared_error

在上述代码中,对输入与随机初始化的权重值进行了矩阵乘法,然后将其与随机初始化的偏置值相加。得到输出值后,便可以计算出实际值与预测值之差的平方误差值。

  1. 少量增加每个权重和偏置值,并针对每个权重和偏差更新一次计算一个平方误差损失值。

如果平方误差损失值随权重的增加而减小,则权重值应增加,权重值应增加的大小与权重变化减少的损失值的大小成正比。反之亦然。另外,通过学习率确保增加的权重值小于因权重变化而导致的损失值变化,这样可以确保损失值更平稳地减小。

接下来,创建一个名为 update_weights 的函数,该函数执行反向传播过程以更新在权重,该函数运行 epochs 次:

from copy import deepcopy

def update_weights(inputs, outputs, weights, epochs):

for epoch in range(epochs):

  1. 将输入通过神经网络传递,以计算权重未更新时的损失:

org_loss = feed_forward(inputs, outputs, weights)

  1. 确保对权重列表进行深复制,由于权重将在后续步骤中进行操作,深复制可解决由于子变量的更改而影响父变量的问题:

wts_tmp = deepcopy(weights)

wts_tmp2 = deepcopy(weights)

  1. 循环遍历所有权重值,然后对其进行较小的更改 (+0.0001):

for ix, wt in enumerate(weights):

wts_tmp[ix] += 0.0001

  1. 当权重修改后,计算更新的前向传播损失。计算由于权重的微小变化而造成的损失变化,因为我们要计算所有输入采样的均方误差,因此将损失的变化除以输入的数据数量:

loss = feed_forward(inputs, outputs, wts_tmp)

del_loss = np.sum(org_loss - loss)/(0.0001*len(inputs))

以较小的值更新权重,然后计算其对损失值的影响,等效于计算权重变化的导数(即反向梯度传播)。

  1. 通过损失变化来更新权重。通过将损失的变化乘以一个很小的数字(0.01)来缓慢更新权重,这就是学习率参数:

wts_tmp2[ix] += del_loss*0.01

wts_tmp = deepcopy(weights)

  1. 返回更新的权重和偏差值:

weights = deepcopy(wts_tmp2)

return wts_tmp2

整体 update_weights() 函数如下所示:

from copy import deepcopy

def update_weights(inputs, outputs, weights, epochs):

for epoch in range(epochs):

org_loss = feed_forward(inputs, outputs, weights)

wts_tmp = deepcopy(weights)

wts_tmp2 = deepcopy(weights)

for ix, wt in enumerate(weights):

wts_tmp[ix] += 0.0001

loss = feed_forward(inputs, outputs, wts_tmp)

del_loss = np.sum(org_loss - loss)/(0.0001*len(inputs))

wts_tmp2[ix] += del_loss*0.01

wts_tmp = deepcopy(weights)

weights = deepcopy(wts_tmp2)

return wts_tmp2

通过更新网络 1000 次,查看训练后网络中的参数和偏置值:

weights = update_weights(x, y, w, 1000)

print(weights)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
.01

wts_tmp = deepcopy(weights)

weights = deepcopy(wts_tmp2)

return wts_tmp2

通过更新网络 1000 次,查看训练后网络中的参数和偏置值:

weights = update_weights(x, y, w, 1000)

print(weights)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-jN2lxnQY-1713321756309)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 16
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值