电子电工技术基础—逻辑门电路

目录

一、数值与编码

1.数制

1.1 二进制

1.2 十六进制

1.3 数制之间的转换

1.3.1 十进制转换为二进制

1.3.2 十进制转换为十六进制

2.编码

二、逻辑代数及应用

1.逻辑代数及其基本运算

1.1 逻辑乘

1.2 逻辑加

1.3 逻辑非

2.逻辑代数的运算法则

2.1 基本运算法则

2.2 交换律

2.3 结合律

2.4 分配律

2.5 吸收律

2.6 反演律(摩根定律)

三、基本逻辑门电路

1.逻辑门电路

1.1 与门

1.2 或门

1.3 非门

1.4 与非门

1.5 或非门

2.复合逻辑运算 

四、逻辑代数的基本规则

1、代入规则 

2、反演规则 

3、对偶规则 

五、逻辑函数的化简方法

1、代数法

2、卡诺图法(常用)

2.1 卡诺图的特点

2.2 卡诺图的缺点

2.3 卡诺图的填写方法

2.4 卡诺图的化简

六、相关基础知识

1.课程概述

2.电路的基本定律


一、数值与编码

1.数制

        所谓数制就是计数的方法。在日常生活中,常用的为十进制,而在数字电路中,通常采用二进制,还有八进制、十六进制。下面介绍数字电路中常用的二进制和十六进制。

1.1 二进制

        二进制有两个数码0和1,它们与电路的两个状态(开和关、高电平和低点平等)直接对应,使用比较方便。

        二进制的进位规则是逢二进一,即1+1=10,可写成10= 1\times 2^{1}+0\times 2^{0}。也就是说,二进制以2为基数,如:

        (11011)_{2}=1\times 2^{4}+1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}=(27)_{10}

1.2 十六进制

        十六进制有0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个编码,其中A~F分别代表十进制的10~15.与十进制区别,规定十六进制数注有下标16或H。十六进制是逢十六进一,即F+1=10,可写成10=1\times 16^{1}+0\times 16^{0},其基数为16,如

        (4E6)_{16}=(4E6)_{H}=4\times 16^{2}+14\times 16^{1}+6\times 16^{0}=(1254)_{10}

1.3 数制之间的转换

1.3.1 十进制转换为二进制

        由上式可见:

(27)_{10}=d_{4}\times 2^{4}+d_{3}\times 2^{3}+d_{2}\times 2^{2}+d_{1}\times 2^{1}+d_{0}\times 2^{0}=(d_{4}d_{3}d_{2}d_{1}d_{0})_{2}

1.3.2 十进制转换为十六进制

        可以先转换为二进制,再由二进制转换为十六进制数。因为每一个十六进制数码都可以用4位二进制数来表示,(1011)_{2}表示十六进制的B;(0101)_{2}表示十六进制的5等。故可将二进制从低位开始,每4位为一组写出其值,从高位到低位读写,就是十六进制。如

(27)_{10}=(0011011)_{2}=(1B)_{16}

下面比较一下上面3种数制的数码,其关系如下:

十进制二进制十六进制十进制二进制十六进制
00000810008
10011910019
20102101010A
30113111011B
41004121100C
51015131101D
61106141110E
71117151111F

2.编码

        所谓编码,就是用数字或某种文字和符号来表示某一对象或信号的过程。十进制编码或某种文字,和符号的编码难以用电路来实现,在数字电路中一般采用二进制数。用二进制数表示十进制数的编码,方法称为二一十进制编码,如BCD码。常用的BCD码有8421码、5421码、2421码等编码方式。,以8421码为例,8421分别代表对应二进制位的权,即当那一位二进制位为1时代表10进制的数为,相应的权数。看一看与十进制码的对照关系:

二、逻辑代数及应用

1.逻辑代数及其基本运算

        逻辑代数也称为布尔代数,它是分析和设计逻辑电路的一种数学工具,用来描述数字电路和数字,系统的结构和特性。,

        逻辑代数有“1”和“0”两种逻辑值,它们并不表示数量的大小,而是表示两种对立的逻辑状态,如电平的高低、晶体管的导通和截止、脉冲信号的有无、事物的是非等。所以,逻辑1和逻辑0与自然数的1和0有本质的区别。

        在逻辑代数中,输出逻辑变量和输入逻辑变量的关系,称为逻辑函数,可表示为

F=f(A、B、C....)

        其中A、B、C....输入逻辑变量,F为输出逻辑变量。下面介绍基本逻辑运算。

1.1 逻辑乘

        逻辑乘是描述与逻辑关系的,又称与运算。逻辑表达式为

F=AB

        其意义是仅当决定事件发生的所有条件A、B均具备时,事件才能发生。例如,把两个开关和一,盏电灯串联接到电源上,只有当两个开关均闭合时灯才能亮。两个开关中有一个不闭合,灯就不能亮。,在A和B分别取0或1值时,F的逻辑状态列于表,称为真值表。

1.2 逻辑加

        逻辑加是描述或逻辑关系的,也称或运算。逻辑表达式为

F=A+B

        其意义是当决定事件发生的各种条件A、B中,只要有一个或一个以上的条件具备,事件F就发生。仍以上述灯的情况为例,把两个开关并联与一盏电灯串联接到电源上,当两个开关中有一个或一个以上闭,合时灯均能亮。只有两个开关全断开灯才不亮。当A和B分别取0或1值时,F的逻辑状态列于表.

1.3 逻辑非

        逻辑非是对一个逻辑变量的否定,也称非运算。逻辑表达式为

F=\bar{A}

        其意义是当条件A为真,事件发生出现的结果必然是这种条件相反的结果。仍以灯的情况为例,一,个在面板上标有“开”和“关”字样的开关与一盏电灯串联接到电源上,但由于安装这个开关的电工粗心,,当开关打向“开”时灯灭,而打向“关”时灯亮。当A取0或1值时,F的逻辑状态列于表。

2.逻辑代数的运算法则

2.1 基本运算法则

2.2 交换律

2.3 结合律

2.4 分配律

2.5 吸收律

2.6 反演律(摩根定律)

三、基本逻辑门电路

‌        基本逻辑门电路有三种,分别是与门电路或门电路非门电路‌。这些基本逻辑门电路在数字电路中起着至关重要的作用,它们分别实现与、或、非三种基本的逻辑关系。

1.逻辑门电路

1.1 与门

        与门(英语:AND gate)又称“与电路”。是执行“与”运算的基本逻辑门电路。有多个输入端,一个输出端。当所有的输入同时为高电平(逻辑1)时,输出才为高电平,否则输出为低电平(逻辑0)。

逻辑式:F=AB

逻辑符号:

真值表:

1.2 或门

        或门(英文:Or gate)又称或电路。如果几个条件中,只要有一个条件得到满足,某事件就会发生,这种关系叫做“或”逻辑关系。具有“或”逻辑关系的电路叫做或门。或门有多个输入端,一个输出端,多输入或门可由多个2输入或门构成。只要输入中有一个为高电平时(逻辑1),输出就为高电平(逻辑1);只有当所有的输入全为低电平时,输出才为低电平。

逻辑式:F=A+B

逻辑符号:

真值表:

1.3 非门

        非门(英文:NOT gate)又称反相器,是逻辑电路的基本单元,非门有一个输入和一个输出端。逻辑符号中输出端的圆圈代表反相的意思。当其输入端为高电平(逻辑1)时输出端为低电平(逻辑0),当其输入端为低电平时输出端为高电平。也就是说,输入端和输出端的电平状态总是反相的。

逻辑符号:

真值表:

1.4 与非门

        NAND也称为与非门电路,是对逻辑与(AND)电路的输出在进行非逻辑运算(NOT)的电路。这种电路的原理如上图所示:没有按下开关时,开关A和开关B均为OFF,即为0状态,且两个开关的节点都接通,所以灯泡为ON,即为1状态;而当开关A和开关B的状态分别是0、1或1、0灯泡都发光,为1的状态;只有将两个开关都按下,即都为1的状态时,由于开关的节点全部断开,灯泡熄灭,输出状态为0。即只有输入全为1时,输出才是0。

逻辑式:F=\overline{AB}

逻辑符号:

真值表:

1.5 或非门

由或门和非门组合而成。

其中,非门和或非门在数字电路中较为常见。

逻辑式:F=\overline{A+B}

逻辑符号:

真值表:

2.复合逻辑运算 

1、与非:有0出1,全1为0

2、或非:有1出0,全0为1 

3、异或:相同为0,不同为1

4、同或:相同为1,不同为0

同或和异或互为取反关系异或和同或是对于两输入变量之间的关系

对于与门、或门、非门都可以有多个输入端,而异或和同或只能有两个输入端

四、逻辑代数的基本规则

1、代入规则 

用某逻辑函数替换另一等式中的某一逻辑变量,逻辑等式依然成立

2、反演规则 

原变量变反变量、反变量变原变量、与变或、或变与、0变1、1变0

反演电电工地电子基础工地电子基再反演即为原式

3、对偶规则 

变量不变、与变或、或变与、0变1、1变0、对偶表达式与原式没有逻辑关系

两式的对偶式具有相等关系,则原式的相等关系也成立

对偶再对偶即为原式

五、逻辑函数的化简方法

1、代数法

        灵活运用常见的公式:并项、吸收、消去、配项

2、卡诺图法(常用)

2.1 卡诺图的特点

n变量有个小方格包括了所有的最小项、变量取值按照格雷码的顺序排放,保证了在卡诺图任意位置几何相邻的两项都为逻辑相邻项

相邻:最小项中只有一个变量取值不一样 ,上下左右是循环相邻

2.2 卡诺图的缺点

不太能用于6变量以上的逻辑函数化简,变量个数越多越复杂

2.3 卡诺图的填写方法

通过配项得到最小项或者最大项表达式

                              将逻辑函数写成最小项表达式,在对应位置填1

                              将逻辑函数写成最大项表达式,在对应位置填0

2.4 卡诺图的化简

利用圈0或者圈1的方式消除相邻项中的某些变量

                          2个相邻消去1个变量        

                          4个相邻消去2个变量

                          8个相邻消去3个变量

化简原则:

(1)画圈个数尽量的少,包括的最小项的个数尽量的多

(2)可以重复画圈,但是两个圈中需要有至少有一个最小项不同

(3)四个角是相邻的,可以画圈

(4)先画唯一可能的圈、避免重复的画圈

(5)无关项即可以看成0,也可以看成1,一切以化简为目的,但每个1都要被圈到

(6)最后的化简结果可能不唯一、但是项数是一样的

以上就是对电子电工技术基础—逻辑门电路中一些相关知识的理解和介绍

六、相关基础知识

1.课程概述

百度百科链接:

电子电工专业_百度百科

【电工与电子技术】电工与电子技术期末考试速成课,不挂科!!#高数帮

2.电路的基本定律

欧姆定律:描述导体中的电流与电压和电阻的关系。公式:I=U/R,其中I是电流,U是电压,R是电阻。掌握电流、电压和电阻之间的关系,理解欧姆定律的应用。例如,欧姆定律计算器的Python

def ohm_law_calculator(voltage, resistance):
    current = voltage / resistance
    return current
voltage = float(input("输入电压 (V): "))
resistance = float(input("输入电阻 (Ω): "))
current = ohm_law_calculator(voltage, resistance)
print(f"电流为: {current:.2f} A")

基尔霍夫定律:
基尔霍夫电流定律(KCL):在任一瞬时,进入某节点的电流之和等于离开该节点的电流之和。公式:∑Iin=∑Iout。学习节点电压法和回路电流法,用于复杂电路的分析。例如,基尔霍夫电压定律(KVL)的Python代码如下:

def kirchhoff_voltage_law(v1, v2, v3, i):
    return abs(v1 + v2 - v3 - i * 10) < 1e-6
v1 = 12.0
v2 = 5.0
v3 = 7.0
i = 1.0
if kirchhoff_voltage_law(v1, v2, v3, i):
    print("满足基尔霍夫电压定律")
else:
    print("不满足基尔霍夫电压定律")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值