AIGC(人工智能生成内容)的底层技术框架的进化之路是一段充满创新和突破的历史。从最初的概念提出到如今的多样化应用,AIGC技术经历了多个阶段的发展,不断推动着内容创作的边界。
1. **早期探索(1957年至今)**:
- 1957年,计算机创作的音乐作品可以看作是AIGC的早期尝试。这一时期的AIGC技术还非常原始,主要依赖于简单的算法和有限的计算能力。
2. **生成对抗网络(GAN)的诞生(2014年)**:
- 2014年,Ian Goodfellow提出了生成对抗网络(GAN),这是一种通过对抗过程训练生成数据的模型。GAN的出现极大地推动了图像、视频、音频等内容的生成能力,成为了AIGC技术的一个重要里程碑。
3. **预训练模型的兴起(2018年左右)**:
- 随着BERT等预训练模型的出现,AIGC技术开始实现质的飞跃。这些模型通过在大规模数据集上进行预训练,能够更好地理解和生成自然语言,为文本生成领域带来了革命性的变化。
4. **多模态技术的融合(2020年左右)**:
- 多模态技术的发展使得AIGC不再局限于单一类型的数据生成。通过结合文本、图像、音频等多种模态,AIGC技术开始实现跨领域的内容创作,如文本到图像的生成、音频到视频的转换等。
5. **大模型的爆发(2021年至今)**:
- 以GPT-3、LaMDA、DALL·E等为代表的大型预训练模型的发布,标志着AIGC技术的又一次重大进步。这些模型不仅参数众多,而且能够处理更复杂的任务,如自动编程、创作音乐、生成艺