网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- 提交日志:允许增长的提交日志有多大;
- 并发性:有多少个线程可以执行写入和读取操作;
- 缓存:调整缓存设置“行缓存”和“键缓存”;
- 超时:连接超时值,查询超时值等;
- JVM参数:堆大小,GC收集算法等;
- 地图降低性能:排序,合并等;
- 消息队列:消息速率,大小等。
测试环境需求
测试环境需求取决于您正在测试的应用程序的类型。对于大数据测试,测试环境应该包含
- 它应该有足够的空间来存储和处理大量的数据;
- 它应该有分布式节点和数据的集群;
- 它应该有最低的CPU和内存利用率,以保持高性能。
七、大数据测试面临的挑战
自动化
大数据的自动化测试需要具有技术专长的人员。另外,自动化工具不具备处理测试过程中出现的意外问题的能力
虚拟化
这是测试的一个不可缺少的阶段。虚拟机延迟会在实时大数据测试中造成计时问题。在大数据中管理图像也是一件麻烦事。
大数据集
八、性能测试挑战
多种技术组合:每个子组件属于不同的技术,需要单独测试
不可用的特定工具:没有一个工具可以执行端到端的测试。例如,NoSQL可能不适合消息队列
测试脚本:需要高度的脚本来设计测试场景和测试用例
测试环境:数据量大,需要特殊的测试环境
监控解决方案:存在有限的解决方案,可以监控整个环境
诊断解决方案:需要定制解决方案来深入了解性能瓶颈区域
- 需要验证更多的数据,并需要更快地完成;
- 需要自动化测试工作;
- 需要能够跨不同的平台进行测试。
概要
随着数据工程和数据分析技术的不断进步,大数据测试是不可避免的。
大数据处理可以是批处理,实时或交互式处理
测试大数据应用程序的3个阶段是
数据分级验证
“MapReduce”验证
输出验证阶段
架构测试是大数据测试的重要阶段,因为设计不佳的系统可能会导致前所未有的错误和性能下降
大数据的性能测试包括验证
数据吞吐量
数据处理
子组件性能
大数据测试与传统数据测试在数据,基础架构和验证工具方面有很大的不同
大数据测试挑战包括虚拟化,测试自动化和处理大型数据集。大数据应用程序的性能测试也是一个问题
【下面是我整理的2023年最全的软件测试工程师学习知识架构体系图】
一、Python编程入门到精通
二、接口自动化项目实战
三、Web自动化项目实战
四、App自动化项目实战
五、一线大厂简历
六、测试开发DevOps体系
七、常用自动化测试工具
八、JMeter性能测试
九、总结(尾部小惊喜)
生命不息,奋斗不止。每一份努力都不会被辜负,只要坚持不懈,终究会有回报。珍惜时间,追求梦想。不忘初心,砥砺前行。你的未来,由你掌握!
生命短暂,时间宝贵,我们无法预知未来会发生什么,但我们可以掌握当下。珍惜每一天,努力奋斗,让自己变得更加强大和优秀。坚定信念,执着追求,成功终将属于你!
只有不断地挑战自己,才能不断地超越自己。坚持追求梦想,勇敢前行,你就会发现奋斗的过程是如此美好而值得。相信自己,你一定可以做到!
最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:
这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新