大数据最新使用Coze工作流(二)_coze 工作流,阿里巴巴大数据开发面试都问些什么

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

使用工作流的顺序如下:

  1. 创建工作流。
  2. 配置工作流。添加工作流节点并按照要处理的用户任务顺序连接工作流。
  3. 测试并发布工作流。
  4. 将工作流添加到你的 Bot 内。

步骤一:创建工作流

  1. 登录扣子
  2. 在左侧导航栏的工作区区域,选择进入指定团队。
  3. 在页面顶部进入工作流页面,并单击创建工作流
  4. 设置工作流的名称与描述,并单击确认
  • 说明

清晰明确的工作流名称和描述,有助于大语言模型更好的理解工作流的功能。

  • 创建后页面会自动跳转至工作流的编辑页面,初始状态下工作流包含 Start 节点和 End 节点。
  • Start 节点用于启动工作流。
  • End 节点用于返回工作流的运行结果。

img

步骤二:配置工作流

创建工作流后,你可以通过拖拽的方式将节点添加到画布内,并按照任务执行顺序连接节点。

工作流提供了基础节点供你使用,除此之外,你还可以添加插件节点来执行特定任务。

  1. 在左侧面板中选择要使用的节点。
  2. 将节点拖拽到画布中,并与其他节点相连接。
  3. 配置节点的输入输出参数。

配置 LLM 节点

LLM 节点是扣子提供的基础节点之一,你可以使用该节点的大语言模型处理文本生成任务。节点配置说明:

  • 模型:所用的大语言模型。
  • Temperature:模型生成内容的随机度。取值范围[0-1],数值越大表示生成不确定性越高、内容越多元。
  • 提示词:该节点的提示词。在提示词中支持使用 {{variable}} 引用输入参数(Input)。
  • 批处理:支持配置批量处理模式,后续该节点会按照配置多次运行。每次运行都会分配参数值,直到达到次数限制或者列表的最大长度。

配置 Code 节点

你可以在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,来处理输入参数并返回响应结果。

该节点支持 JavaScript、Python 运行时。在编码时你需要注意:

运行时注意事项
JavaScriptJavaScript 支持 TypeScript,提供静态语言编码体验。JavaScript 中,仅内置了dayjs(版本 1.8.36) 和 lodash(版本 4.17.20) 两个三方依赖库。JavaScript 运行时遵循 WinterCG 规范,支持 Minimum Common Web Platform API 列举的大多数 API,具体可用的 API 你可以在 IDE 内编码时参考代码提示。
PythonPython 中,仅内置了 requests_async 和 numpy 两个三方依赖库,requests_async 依赖库与 requests 类似,但需要 await。
//only dayjs and lodash are allowed
import dayjs from 'dayjs';
import _ from 'lodash';

async function main({ params }: Args): Promise<Output> {
    // get input params by this way
    return {
      content: params.name
    };
}


import requests_async as requests

async def main(args: Args) -> Output:
    # you can get url by this way
    url = args.params['url']
    response = await requests.get(url)
    ret = {
      'code': response.status_code,
      'res': response.text,
    }
    return ret


在节点内的 Code 区域单击 Edit in IDE 可通过 IDE 编辑和调试代码。

img

具体使用说明如下:

  • 使用 AI 生成代码
  • 你可以在 IDE 底部单击 尝试 AI,并输入自然语言设定代码逻辑,AI 将自动生成代码。你也可以选中代码片段,通过快捷键(macOS 为 Command + I、Windows 为 Ctrl + I)唤起 AI,并输入自然语言让 AI 帮助你修改代码。
  • 补全代码
  • 如果你已经为 Code 节点配置好了输入参数,则编辑时支持自动补全参数。
  • 调试代码
  • 单击测试代码,在测试面板以 JSON 格式输入参数进行测试。支持使用 AI 自动生成模拟数据进行测试。
  • 设置输入参数后,单击运行,你可以在输出区域查看运行结果。在页面底部单击更新 Schema,可将结果同步到 Code 节点的输出值

img

配置 Knowledge 节点

知识库节点可以根据输入参数从指定知识库内召回匹配的信息。节点配置说明:

  • 设置输入参数,节点会根据参数值召回关键内容。
  • 设置知识库,你需要使用的知识库。
  • 最大召回数量:从知识库召回的最大段落数,数值越大返回的内容越多。
  • 最小匹配度:知识库会根据设置的匹配度召回段落,低于匹配度的内容将不会被召回。

配置 Condition 节点

该节点是一个 if-else 节点,用于设计工作流内的分支流程。

当向该节点输入参数时,节点会判断是否符合如果区域的条件,符合则执行如果对应的工作流分支,否则执行否则对应的工作流分支。

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

阶课程,涵盖了95%以上大数据知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

<think>好的,用户想查找关于Coze工作流使用教程。首先,我需要查看提供的引用内容。引用[1]提到了一个详细的Coze工作流教程,甚至被称为“胎教版”,说明非常基础详细。里面还提到工作流界面友好,操作直观,适合没有经验的用户。这可能是一个主要的教程来源。引用[2]则讨论了调用工作流的失败几率和新系统的改进,可能涉及使用中的注意事项。 用户的题是需要使用教程,所以重点应放在引用[1]的内容。需要整理步骤,比如工作流搭建步骤、界面操作、模板选择等。同时,可能还要提到引用[2]中关于调用工作流的稳定性题,作为使用中的注意点。 需要确保回答结构清晰,分步骤说明,并自然地添加引用标识。另外,根据系统指令,生成相关题。可能的题包括如何设计高效工作流、调试技巧、应用场景等。最后,检查是否符合格式要求,如使用中文、正确LaTeX语法(虽然这里可能用不上数学公式,但要注意如果有的话),以及相关题的生成。</think>### Coze工作流使用教程详解 Coze工作流通过可视化编程方式实现复杂任务流程设计,以下是具体操作步骤: 1. **界面布局认知** - 左侧面板:存放预置节点库(数据输入、API调用、条件判断等) - 中央画布:通过拖拽方式连接各功能节点 - 右侧属性栏:设置节点参数与调试信息[^1] 2. **基础搭建流程** ```python # 示例工作流伪代码 def coze_workflow(input): 数据清洗 = 清洗模块(input) 特征分析 = 分析引擎(数据清洗) 决策输出 = 决策树(特征分析) return 结果格式化(决策输出) ``` 3. **进阶功能运用 - 使用条件分支处理多场景需求 - 配置循环节点实现批量处理 - 接入API扩展外部服务能力 4. **调试技巧 - 使用「运行轨迹」功能追踪数据流向 - 设置断点检查中间结果 - 查看错误日志定位故障节点[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值