Tokens与大模型收费:原因及与API调用、订阅收费的区别!

最近流行炫耀自己花了多少Tokens

有人说它是AI世界里的“数字货币”

只因

【大模型按Tokens收费】

比如今天早上

特大妹通过某平台调用DeepSeek

平台收费标准是

每100万tokens,收费16块钱

这么一算,我今早花了3分钱

账单显示

我每问DeepSeek一个问题

都会“花掉”一些 Tokens

每个问题回答完毕后,自动显示

你消耗了多少tokens

嘿嘿,有意思吧

人类每次和大模型沟通聊天、写作、预测…

都会消费一些 Tokens

这时候,很多人就疑惑了

啥是tokens?如何收费?

和传统的API调用、订阅收费,有啥区别?

Token是大模型处理的最小单位

相当于一种“计算粒度”

不是直接用字或单词来计量

而是文本经过模型分词器切分后

得到的最小单位

比如,英文「I love AI !

再比如

中文的「人工智能很强大

简单理解

Token ≠ 单词 ≠ 字符

而且Token的长度并不固定

它的长度取决于

具体模型的Tokenizer(分词器)规则

主要是因为

大模型运行的计算成本非常高

按Tokens计费是为了更精准控制资源使用

这样的计费方式更加公平和透明

如果按传统API调用收费方式

按次收费,调一次收一次

且每次收固定费用,显然不合理

对于大模型来讲

短文本和长文本的计算成本完全不同

Tokens收费能精准到什么程度?

费用两部分组成

你输入的问题+AI输出的答案,都要算钱

比如

输入 1k tokens + 输出 2k tokens = 按 3k tokens 计费

你看到的**[DeepSeek API报价单]**

通常是这样的

所以啊,问AI问题时,你也别啰里八嗦

你每敲一个字,都是要算钱滴

虽然,DeepSeek也是通过API调用

但这只是技术方式,而不是收费方式

不过,之前的API调用

业界默认的收费方式是

按次收费,每调用一次,收取固定费用

比如

短信 API(每发一条短信,固定收取 0.01元)

天气查询 API(每查一次,固定收取0.03元)

这与现在的按Tokens消耗收费

区别还是非常明显

收费方式没有孰好孰坏

不同项目采用不同方式

按次,适合【标准服务】的产品

按Tokens,适合【动态生成】的产品

当然有

就是我们非常熟悉的传统收费方式了

①订阅收费,比如SaaS类

按 月/年 付费,无论实际使用量是多少

一般都是固定费用

②按计算资源收费,比如云计算类

按消耗多少计算资源(CPU/GPU/TPU)收费

按数据存储容量(GB/TB)收费

按带宽传输量(GB / TB)收费

③按功能解锁收费,解锁一个功能收多少钱

比如:解锁安全功能、解决XXX高级功能等

有的也分基础版、高级版等

总之,不同项目类型,不同收费方式

但是,实际项目中付费方式

很多都采用**【混合模式】**

比如

【API按次 + Tokens按量】混合收费

【订阅 + Tokens按量】混合收费

【一次性合同+日常运营】混合收费

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>好的,我现在需要回答用户关于如何在Spring Boot中使用WebClient调用大模型的流式接口的问题。首先,我需要回顾一下用户提供的引用内容,特别是引用[3],里面提到了WebFlux和流式调用大模型的方法。用户希望得到一个示例,所以重点应该放在代码实现上。 首先,我应该确认WebClient的基本用法。WebClient是Spring WebFlux的一部分,用于非阻塞的HTTP请求。流式调用通常涉及处理服务器发送的事件(SSE)或分块传输的数据。大模型的流式响应可能以SSE形式返回,每个数据块逐步传输。 接下来,我需要考虑如何配置WebClient实例。根据引用[3],需要创建带有响应式支持的WebClient,设置baseUrl,并配置默认的header,比如Content-Type和Authorization,特别是如果大模型API需要认证的话。 然后,处理流式响应。使用WebClient的post方法发送请求,body可能是一个Mono,比如使用BodyInserters.fromValue发送JSON数据。响应应该通过retrieve()获取,然后作为ServerSentEvent的流进行处理。这里需要注意,每个事件的数据可能需要解析,例如JSON对象。 另外,用户可能需要处理每个数据块并最终汇总结果。例如,使用StringBuilder来累积响应内容,并在订阅时触发请求。同时,需要确保主线程不会提前退出,所以可能需要阻塞或等待异步操作完成,这在测试或命令行应用中常见。 还要考虑异常处理,比如在doOnError中记录错误,以及在onComplete中处理完成后的逻辑。此外,引用[3]提到WebFlux的非阻塞特性,确保流式处理不会阻塞主线程,这一点需要在示例中体现出来。 最后,生成相关问题,帮助用户进一步探索,比如如何自定义请求头、处理错误、优化性能等。需要确保所有步骤符合用户的要求,代码语法正确,并且使用中文回答,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。</think>以下是如何在Spring Boot中使用WebClient调用大模型流式接口的详细实现步骤和示例: ### 1. 配置WebClient实例 ```java @Bean public WebClient webClient() { return WebClient.builder() .baseUrl("https://api.largemodel.com/v1/stream") .defaultHeader(HttpHeaders.CONTENT_TYPE, MediaType.APPLICATION_JSON_VALUE) .defaultHeader("Authorization", "Bearer your-api-key") .build(); } ``` *注:需在`application.properties`中配置baseUrl和API密钥更安全* ### 2. 流式响应处理方法 ```java public void streamModelResponse(String prompt) { webClient.post() .uri("/chat/completions") .body(BodyInserters.fromValue(Map.of( "prompt", prompt, "temperature", 0.7, "stream", true ))) .retrieve() .bodyToFlux(ServerSentEvent.class) .timeout(Duration.ofSeconds(30)) .doOnError(WebClientResponseException.class, ex -> log.error("API响应错误: {} {}", ex.getRawStatusCode(), ex.getResponseBodyAsString())) .subscribe( event -> { String data = event.data(); if (!"[DONE]".equals(data)) { JsonNode node = new ObjectMapper().readTree(data); System.out.print(node.get("choices").get(0).get("text").asText()); } }, error -> System.err.println("错误: " + error.getMessage()), () -> System.out.println("\n\n流式传输完成") ); } ``` ### 3. 完整控制器示例 ```java @RestController @RequiredArgsConstructor public class StreamController { private final WebClient webClient; private final StringBuilder fullResponse = new StringBuilder(); @GetMapping("/stream-chat") public Flux<String> streamChat(@RequestParam String message) { return webClient.post() .bodyValue(createRequest(message)) .retrieve() .bodyToFlux(DataBuffer.class) .map(dataBuffer -> { String chunk = DataBufferUtils.release(dataBuffer).toString(StandardCharsets.UTF_8); fullResponse.append(chunk); return chunk; }); } private Map<String, Object> createRequest(String message) { return Map.of( "messages", List.of(Map.of("role", "user", "content", message)), "stream", true, "max_tokens", 2000 ); } } ``` ### 关键点说明: 1. **响应式背压控制**:通过`Flux`实现按需处理数据流,自动处理背压[^3] 2. **超时配置**:使用`.timeout()`防止长时间无响应 3. **SSE事件处理**:支持标准的Server-Sent Events格式 4. **数据完整性**:使用StringBuilder累积完整响应 5. **错误处理**:区分网络错误和API业务错误
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值