Dify是一个开源的LLM应用开发平台,今天咱们详细介绍下Dify的安装步骤和使用场景。
Dify下载地址
Dify的官方GitHub仓库提供了源代码的下载,您可以通过以下链接访问并下载Dify:
安装依赖
Docker环境配置
在安装Dify之前,您需要确保您的计算机上安装了Docker环境。以下是配置Docker镜像源的步骤,以提高拉取镜像的速度:
- 打开Docker Desktop,进入Settings中的Docker Engine。
- 在右方的json结构中,加入以下镜像源列表:
"registry-mirrors": [
"https://registry.docker-cn.com",
"https://docker.mirrors.ustc.edu.cn",
"http://hub-mirror.c.163.com",
"https://cr.console.aliyun.com/"
]
点击“Apply & restart”保存设置并重启Docker服务。
安装Python依赖
Dify使用Python语言开发,因此您需要安装Python环境以及相关的依赖包。以下是安装依赖的步骤:
- 安装Python 3.12环境(推荐使用pyenv进行版本管理)。
- 使用Poetry管理Python依赖。首先,您需要安装Poetry:
curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -
- 通过Poetry安装Dify的依赖。在Dify项目的根目录下执行以下命令:
poetry env use 3.12
poetry shell
poetry install
如果在执行poetry install
时遇到依赖下载缓慢的问题,可以尝试禁用keyring:
export PYTHON_KEYRING_BACKEND=keyring.backends.null.Keyring
后端API部署
- 从GitHub克隆Dify源代码到本地:
git clone https://github.com/langgenius/dify.git
- 启动DockerCompose堆栈,后端需要一些中间件,包括PostgreSQL、Redis和Weaviate,可以使用以下命令一起启动:
cd ../docker
cp middleware.env.example middleware.env
docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
- 配置API环境:
cd ../api
cp .env.example .env
sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
- 运行数据库迁移,以确保数据库是最新的:
poetry run python -m flask db upgrade
前端页面部署
- 安装Node.js v18.x LTS和NPM版本8.x.x或Yarn。
- 配置环境变量。在当前目录下创建文件
.env.local
,并复制.env.example
中的内容。根据需求修改这些环境变量的值:
# For production release, change this to PRODUCTION
NEXT_PUBLIC_DEPLOY_ENV=DEVELOPMENT
# The deployment edition, SELF_HOSTED
NEXT_PUBLIC_EDITION=SELF_HOSTED
# The base URL of console application, refers to the Console base URL of WEB service if console domain is different from api or web app domain.
NEXT_PUBLIC_API_PREFIX=http://localhost:5001/console/api
# The URL for Web APP, refers to the Web App base URL of WEB service if web app domain is different from console or api domain.
NEXT_PUBLIC_PUBLIC_API_PREFIX=http://localhost:5001/api
- 启动Web服务:
npm run start
# or
yarn start
# or
pnpm start
正常启动后,访问http://127.0.0.1:3000
即可使用本地部署的Dify。
Dify提供了一个强大的平台,让您能够快速构建和部署生成式AI应用。希望这篇指南能帮助您更好地了解和使用Dify。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓