一、Dify 简介
Dify 是一款开源的大语言模型(LLM)应用开发平台,融合了后端即服务(Backend as Service)和 LLMOps 的理念,旨在帮助开发者更简单、更快速地构建和运营 AI 原生应用。
Dify 提供 Agent 工作流、RAG Pipeline、丰富的集成及可观测性等一站式能力,即使是非技术人员也能轻松构建并部署生产级 AI 应用,参与到 AI 应用的定义和数据运营中。
官网地址:https://cloud.dify.ai/ (需要科学上网)
项目地址:https://github.com/langgenius/dify
社区文档:https://docs.dify.ai/zh-hans/guides
下面,我们就用 Dify 官网应用广场中自带的“知识库+聊天机器人”的模板应用,来免费构建一个自定义应用程序---软件测试专家(名称可以随意定义)。
我们可以把它添加到工作区。先来看下它这个工作流,一共分为 4 步:
-
首先根据用户输入的内容,去知识库中检索匹配;
-
将检索后的内容交给大模型,比如 GPT、DeepSeek 等去处理;
-
然后用大模型提取参数,生成回复内容;
-
回复用户。
所以,我们有两件重要的事要做:
-
配置大模型,国外的 Open AI 用不了,可以配置国内的;
-
创建一个知识库,用来检索匹配问题,这样答案更加垂直、精准。
二、配置模型供应商
首先需要配置模型供应商,填写 API Key。Dify 支持多种模型供应商,如 OpenAI、硅基流动、通义千问、深度求索、火山方舟等。这里我们用的是硅基流动。怎么样,很耳熟吧?如何免费获取硅基流动 API 额度,可以翻看之前的文章《在PyCharm中实现多种“免费”大模型接入自由!》。配置完成后,直接保存即可。
三、创建知识库
① 创建知识库
接下来需要创建一个知识库,名字可以任取,这里我们取名叫“软件测试专家”。
② 选择数据源,上传知识库文件
既然是软件测试方面的,我这里就上传的是一些软件测试教程相关的文件。注意:可以累计上传多个文件,但是不能一次同时上传多个,要一个个文件操作。
③ 文本分段与清洗
上传文件后,需要对文件进行分段和清洗,说白了就是要先把它翻译成大模型可以识别的内容,清洗后的文件才能拿给大模型处理。
④ 文档上传与处理
如果想要继续添加,可以再上传其他文件,重复上面步骤。
四、配置工作流
1.编辑知识检索
前面我们已经看了,这个工作流分为 4 步,第一步就是“知识检索”,也就是知识库。所以需要在“知识检索”这个节点中关联上面添加的知识库“软件测试专家”。
2.配置LLM
① 关联大模型
接下来在第二个节点“LLM”中关联大模型。这里选择我们一开始就配置好的硅基流动中的大模型,例如这里选择DeepSeek-V3。
② 配置上下文
3.配置参数提取器
同样地,配置第三个节点“参数提取器”,这里我选的也是DeepSeek-V3。
4.配置“直接回复”
当然你还可以接着配置第四个节点“直接回复”,或者继续给它增加后续节点,例如执行代码、发起 http 请求等。
5.预览使用
我这里没有继续配置,直接点击顶部预览按钮,即可预览使用。例如,我提出了一个问题“介绍一下白盒测试中,基于数据流的测试技术”,这时它会一个节点一个节点走,走完的节点会出现绿色的✅,走完所有节点后,返回问题答案。
五、发布使用
配置完所有节点,此时就可以发布为自己的应用进行独立使用了。发布完成后,有多种使用方式,分别是:
-
“运行”
-
“嵌入网站”
-
“API”使用
-
在Dify主页打开
下面我们来分别介绍下这几种使用方式。
1.直接运行使用
这种方式会直接在浏览器中打开一个新标签页,也可以把URL分享给任意好友在任意浏览器中直接打开使用,并且无需登录。感兴趣的可以访问我创建的这个软件测试相关的应用:
https://udify.app/chat/n21ZbS9HWdmFcOnA
2.嵌入网站使用
这个很好理解,就是嵌入某个前端网站中使用。
例如,我把它嵌入到一个通过Django Template写的一个页面中,此时就相当于内部网站使用了。
3.作为 API 使用
API 使用也比较好理解,就是把它作为一个独立的 API 在代码中进行调用使用。
注意,这里的 API Key 不同于硅基流动的 API Key,需要单独创建一个 Dify 的 API Key:
例如,我们来发起一个 http 请求,调用这个 API,我提出的问题是“黑盒测试中有哪些测试用例设计方法?”,下面是返回的内容,可以看到,它跟我前面配置的工作流一致,先是启动工作流,然后启动第1个节点,第1个节点处理完成,再启动第 2 个节点,以此类推,最后直到工作流完成。
小结
以上就是利用 Dify 工作流来构建一个自定义应用的全部过程。当然,Dify 能提供的能力远不止于此,还可以与其他工具结合创建工作流来生成图片、视频、文字转语音......总体来说,可玩性、可扩展性都很强,使用方式也很多样化。另外,也可以把 Dify 项目克隆下来,本地部署,这样就不用担心数据泄露的问题。
但也存在一些缺点,例如:工作流如果节点比较多,那么整个处理分析的流程就会很长,耗费的时间也会比较久,用户需要长时间处于等待状态。还有就是需要科学上网的加持。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】