前言
🤔️对于生成式AI,大模型、AIGC或者语言模型的概念,有何不同?
以AIGC为例,它在不同的场景下有多重含义。从字义上讲,AIGC用英文表示人工智能生成的内容。但在实际使用时,它往往有多个意思,有时指人工智能生成的内容,有时指生成内容所用的算法,有时指厂家提供的产品或服务。
大模型的概念是指在深度学习发展到一定阶段时,人们形象地给模型取的名字。它的特点是什么呢?大多数人会注意到“大”这个词,更多的时候是从2018年Bert模型出现之后开始流行的。当时,人们第一次看到一个几百兆的模型,觉得这是大模型。相比之下,目前的大模型已经有几百个GB甚至上千个GB。可以看到,这个词随着时间的推移,含义会发生很多的变化。
另一个概念是生成式人工智能,在汉语表达中也叫做生成式AI。这个词更偏向于我们国家官方对生成式模型的称呼。
最后一个是语言模型,这是从技术角度的称呼。如果从事研究自然语言处理或自然语言理解的同学,可能会更了解这个概念。它指的是对语言进行建模的模型。
对于业内人士来说,他们可能会关注生成式语言模型的区别,比较经典的包括Bert、T5、ChatGPT等。在自然语言理解方面,Bert仍然是一个很好的模型,被广泛应用于各种任务中。Bert是一个自编码的模型,利用了双向信息,对上下文的信息有很好的掌握,有利于完成自然语言理解任务,如分类、完形填空、阅读理解等,但无法直接做生成。
另一种生成式语言模型是T5,它是一种序列到序列的模型,同时也应用了双向注意力机制。T5主要用于条件生成任务,这意味着给定一个完整且丰富的条件,例如一篇长文章,它可以生成一个摘要或翻译等任务。在这种情况下,输入和输出的长度基本上是对等的,属于条件生成范畴。
再来看看ChatGPT,它是一种单向语言模型,只能通过前文来预测后面的内容。因此,ChatGPT主要擅长一些生成式任务,例如问答、写作等。它可以做到无条件生成,例如给出一句话,它可以回答上千个字的内容,甚至帮助写一篇论文。这是ChatGPT的一个显著特点。
用考试来做类比对比模型,Bert是觉得世界上有很多种问题,可能有判断题、选择题、填空题。而ChatGPT它能够将所有自然语言理解问题转化为问答问题。这意味着,如果一个模型能够表现出色地回答自然语言的问答问题,那么它往往也能良好地完成其他自然语言任务,如选择题和填空题等。
目前,这三种模型各具特色,没有一种模型可以在自然语言理解、无条件生成和条件生成三个领域同时达到最优。这也很容易理解,因为很难找到一种方式,它在所有条件下都是最好的。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
本文转自 https://blog.csdn.net/weixin_49892805/article/details/143324724?spm=1001.2014.3001.5501,如有侵权,请联系删除。