国内AI大模型前十排行榜,最后一个你可能没听过

根据2024年的最新数据和搜索结果,国内AI大模型的前十排行榜

  1. Deepseek

    :最近爆火,一度成为对标甚至超越ChatGPT的存在。

  2. 阿里云通义千问(Qwen2-72B)

    :在SuperCLUE基准测试中得分最高,超过众多国内外闭源模型,引领全球的开源生态。

  3. 华为盘古大模型

    :凭借其强大的技术能力和行业应用得到广泛认可。

  4. 百度文心一言(ERNIEBot)

    :专注于自然语言理解与生成,适用于文本创作、智能问答等场景。

  5. 科大讯飞星火大模型

    :支持对话、写作、编程等功能,还能提供语音交互方式。

  6. 字节跳动豆包(Doubao-Pro)

    :在客观评测中以75.96分排名第二,得分最高的国产大模型。

  7. 智谱清言(GLM-4)

    :在数据和算法方面有一定优势,其模型能够较好地处理各种复杂的语言任务。

  8. 百川智能Baichuan4

    :在国内大模型中排名第一,其文科、理科能力较为均衡。

  9. MiniMax abab6.5

    :大模型创业公司的代表,超过70分的表现,位列国内大模型第一梯队。

  10. 零一万物Yi系列

:模型在多项评测中表现出色,位于行业前列。

  1. 月之暗面Kimi(Moonshot-v1)
:在处理长文本内容方面具有一定优势,能很好地理解和处理长篇文档、会议纪要等。

以上排名综合了多个来源的数据和评测结果,反映了国内AI大模型在不同领域和应用场景中的竞争力和影响力

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>好的,用户想将微信接入大模型实现自动回复。首先,我需要考虑用户的技术背景,可能是个开发者或者有一定技术基础的用户,想通过自动化提升回复效率或用户体验。接下来,需要明确用户的具体需求,比如是用于公众号、小程序还是个人号,不同场景的实现方式不同。公众号和小程序有官方API支持,个人号可能需要第三方库,但存在封号风险,这点必须提醒用户。 然后,用户可能需要了解整个流程的关键步骤:申请微信权限、选择大模型、开发中间层、处理消息和回复逻辑、部署测试以及后续的运维。要分步骤详细说明,每个部分可能遇到的问题,比如API调用限制、消息加解密、大模型的选择和优化回复内容的方法。 另外,需要注意合规性问题,微信对自动回复有严格规定,特别是涉及用户隐私和内容安全。必须建议用户遵守平台规则,避免敏感话题,并设置人工审核机制。可能用户考虑到这些风险,需要提预警。 最后,提供一些参考资源,如开源项目、官方文档链接,帮助用户进一步学习。可能需要用代码示例说明如何调用API和处理消息,但根据用户的问题深度,可能需要判断是否需要更基础的指导还是高级配置建议。整个过程需要逻辑清晰,步骤明确,同时强调注意事项,确保用户能安全有效地实现目标。</think>将微信接入大语言模型(如GPT、文心一言等)实现自动回复,通常需要结合微信的开放接口和大模型的API能力。以下是实现思路和关键步骤: --- ### **1. 明确场景和限制** - **适用场景**:公众号自动回复、微信群助手、个人号自动聊天(需注意微信官方限制)。 - **合规性**:微信对自动化行为(尤其是个人号)有严格限制,需遵守《微信公众平台运营规范》,避免滥用或敏感内容。 --- ### **2. 技术实现路径** #### **路径一:微信公众号(推荐)** - **适用对象**:服务号/订阅号(需企业认证)。 - **步骤**: 1. **申请公众号开发者权限** 在[微信公众平台](https://mp.weixin.qq.com)开启开发者模式,获取`AppID`和`AppSecret`。 2. **配置服务器** 需要一个公网可访问的服务器(如云服务器),用于接收微信的消息推送(需处理`token`验证)。 3. **消息处理逻辑** - 用户发送消息 → 微信服务器转发到你的服务器 → 调用大模型API生成回复 → 返回内容给微信服务器 → 用户收到回复。 - 需解析微信的XML消息格式,实现加密解密(可选)。 4. **集成大模型API** 例如使用以下模型: - OpenAI GPT:通过API调用(需解决网络访问问题)。 - 国内大模型:文心一言(ERNIE Bot)、讯飞星火、通义千问等(API需企业申请)。 #### **路径二:微信个人号(高风险)** - **风险提示**:微信个人号自动化可能违反平台规则,存在封号风险,仅建议测试用途。 - **实现方式**: 使用第三方库(如`Wechaty`、`ItChat`)模拟登录,监听消息并调用大模型API。 ```python # 示例:使用ItChat(已停止维护,仅作参考) import itchat from erniebot import ErnieBot # 假设调用文心API @itchat.msg_register(itchat.content.TEXT) def reply(msg): response = ErnieBot().chat(msg.text) return response itchat.auto_login() itchat.run() ``` --- ### **3. 关键代码逻辑(公众号示例)** 使用Python Flask处理微信服务器请求: ```python from flask import Flask, request import hashlib import xml.etree.ElementTree as ET from erniebot import ErnieBot # 替换为实际的大模型SDK app = Flask(__name__) # 微信Token验证 @app.route('/wechat', methods=['GET']) def verify(): signature = request.args.get('signature', '') timestamp = request.args.get('timestamp', '') nonce = request.args.get('nonce', '') echostr = request.args.get('echostr', '') token = 'YOUR_TOKEN' # 验证签名 list = [token, timestamp, nonce] list.sort() sha1 = hashlib.sha1(''.join(list).encode('utf-8')).hexdigest() if sha1 == signature: return echostr else: return 'Verification Failed' # 处理用户消息 @app.route('/wechat', methods=['POST']) def handle_message(): xml_data = request.data root = ET.fromstring(xml_data) user_msg = root.find('Content').text from_user = root.find('FromUserName').text # 调用大模型生成回复 bot_response = ErnieBot().chat(user_msg) # 返回XML格式回复 return f''' <xml> <ToUserName><![CDATA[{from_user}]]></ToUserName> <FromUserName><![CDATA[{root.find('ToUserName').text}]]></FromUserName> <CreateTime>{int(time.time())}</CreateTime> <MsgType><![CDATA[text]]></MsgType> <Content><![CDATA[{bot_response}]]></Content> </xml> ''' if __name__ == '__main__': app.run(port=80) ``` --- ### **4. 优化与注意事项** 1. **内容安全过滤** 添加敏感词检测(如微信官方内容安全API),避免违规回复。 2. **性能优化** - 设置大模型回复的`max_tokens`限制,避免超长响应。 - 使用缓存机制(如Redis)减少重复请求。 3. **用户体验设计** - 添加“正在输入中”状态(通过客服接口实现)。 - 支持多模态回复(图片、语音需转换格式)。 --- ### **5. 推荐工具和资源** - **微信开发文档**:[公众号开发指南](https://developers.weixin.qq.com/doc/offiaccount/Getting_Started/Overview.html) - **开源项目参考**: - [wechaty](https://github.com/wechaty/wechaty)(多协议微信机器人) - [WeixinBot](https://github.com/liuwons/wxBot)(已停更,可学习思路) - **大模型API申请**: - 百度智能云(文心大模型) - 阿里云(通义千问) - 讯飞开放平台(星火大模型) --- 如果需要更具体的实现细节(如某一步骤的代码或部署配置),可以进一步说明需求!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值