2025年国内AI大模型排行榜

1、什么是大型语言模型?

大模型是一种使用海量参数和数据进行预训练的深度学习模型,可以在多个领域和任务中展现出强大的泛化能力和自监督学习能力。

下面列举一系列大模型,及建设方。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

2、2025年国内AI大模型排行榜

图片

第一名:DeepSeek

DeepSeek是杭州深度求索人工智能基础技术研究有限公司推出,他是使用数据蒸馏技术,得到更为精炼、有用的数据。由知名私募巨头幻方量化孕育而生,专注于开发先进的大语言模型(LLM)和相关技术。

三大模型

基础模型(V3),需要给到从“过程-结果”的清晰指令,例如角色设定、思维链提示、提示词结构化等。属于通用模型(2024.12),高效便捷,适用于绝大多数任务,“规范性 ”任务;

深度思考(R1),较为开放,只要目标清晰,明确是目的及约束,对于推理过程的设定可以模糊处理。属于推理模型,复杂推理和深度分析任务,如数理逻辑推理和编程代码,“规范性”任务;

联网搜索:RAG(检索增强生成),知识库更新至2024年7月;

图片

特点:智能对话,数据分析

第二名:KIMI

KIMI是一款Moonshot AI开发的人工智能助手,KIMI主要应用场景为专业学术论文的翻译和理解、辅助分析法律问题、快速理解API开发文档等,是全球首个支持输入20万汉字的智能助手产品。

图片

特点;长文本处理,日常查询

第三名:即梦

即梦AI是由快速公司推出的,他是一个AI创作平台,可激发艺术创意、提升绘画和视频创作体验。

图片

特点:有积分,图,视频,一致性

第四名:豆包

豆包由字节跳动公司出品的,是你的 AI 聊天智能对话问答助手,写作文案翻译情感陪伴编程全能工具。豆包为你答疑解惑,提供灵感,辅助创作,也可以和你畅聊任何你感兴趣的话题。

特点:比较多的智能体

第五名:纳米搜索

由360公司推出的,支持文字、语音、拍照、视频等多种搜索方式,是一种多模态内容创作引擎。

特点:整合多种模型,多模态搜索

第六名:可灵

可灵AI(Kling AI)是快手推出的新一代AI创意生产力平台,基于快手自研大模型可灵和可图,提供高质量视频及图像生成能力,通过更便捷的操作、更丰富的能力、更专业的参数和更惊艳的效果,满足创作者对创意素材生产与管理的需求。

图片

特点:文生图,图生视频

第七名:智谱清言

由清华大学推出,智谱清言app可以轻松驾驭代码编程、文档创作、广告文案等场景。

特点:多模态交互,应用广泛

第八名:通义千问

是阿里云推出的语言模型,可以帮你解答问题、文档阅读、联网搜索并写作总结,最多支持1000万字的文档速读。

图片

特点:解答教学,深度问题

第九名:文心一言

文心一言既是你的智能伙伴,可以陪你聊天、回答问题、画图识图;也是你的AI助手,可以提供灵感、撰写文案、阅读文档、智能翻译,帮你高效完成工作和学习任务。他是百度全新一代知识增强大语言模型,文心大模型家族的新成员,能够与人对话互动、回答问题、协助创作,高效便捷地帮助人们获取信息、知识和灵感。

图片

特点:理解自然语言能力强

第十名:天工AI

天工AI是由昆仑万维开发的,是国内首个对标 ChatGPT 的双千亿级大语言模型,也是一个对话式AI助手。天工是一款支持搜索、写作、对话、文档分析、画画、做PPT的全能型AI助手。你可以借助AI技术,检索信息、多语言翻译、写论文、写代码、写方案、写汇报、做PPT、归纳总结文档和音频视频。

特点:双千亿级大语言模型

其他版本的排名,供参考。

图片

3、全球AI整体实力具体排名情况

‌美国‌:以70.06的高分位居榜首,表现出色,拥有众多顶尖AI公司和高校‌。

‌中国‌:以40.17的分数位列第二,研发实力强劲,AI期刊和会议出版物在全球范围内领先‌

‌英国‌:以第三名的身份出现,具有独特的研发、教育和政策治理优势‌。

总之,目前AI排行榜的主要评估维度包括研发、责任AI、经济、教育等多个方面‌。例如,斯坦福大学对全球AI实力进行了全面评估,从研发、责任AI、经济、教育等8大支柱、42个指标进行了综合分析,并设有创新、经济竞争力、政策治理等子指数‌。

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 大型AI模型性能排名概述 目前关于大型AI模型的性能评估主要集中在特定任务上的表现,如自然语言处理、图像识别等领域。然而,并不存在一个统一的标准排行榜来衡量所有类型的大型AI模型的整体性能[^1]。 对于语言类的大规模预训练模型,在某些评测基准上可以获得较好的成绩对比情况如下: - **PaLM系列**:由Google研发,在多个NLP下游任务中取得了优异的成绩。 - **GPT系列**:OpenAI推出的生成式预训练Transformer架构,最新的版本展示了强大的泛化能力以及上下文学习的能力。 - **BLOOM**:来自BigScience项目的一个多语言开源大模型,在跨语言迁移方面表现出色。 - **ERNIE系列**:百度公司推出的一系列增强表示的知识集成模型,在中文场景下有很好的应用效果。 值得注意的是,不同应用场景下的需求差异很大,因此实际选择时还需要考虑具体的业务背景和技术细节等因素[^2]。 为了更直观地展示这些模型之间的相对优势,下面给出了一张简化版的比较表格(请注意这只是一个示例性的概括而非官方发布的正式榜单): | 模型名称 | 开发者 | 主要特点 | |------------|----------|----------------------------------| | PaLM | Google | 高效参数配置;优秀的零样本/少样本适应力 | | GPT | OpenAI | 广泛的应用范围;出色的对话理解和生成质量 | | BLOOM | BigScience | 支持超过二百种语言;良好的跨文化兼容性 | | ERNIE | 百度 | 结合大规模知识图谱;针对汉语优化 | 上述列表仅反映了部分知名模型及其特性,并不代表全面详尽的产品线或绝对的技术领先程度。随着研究进展和技术革新,新的突破不断涌现,各家公司也在持续更新迭代自家产品以保持竞争力[^3]。 ```python import pandas as pd data = { 'Model Name': ['PaLM', 'GPT', 'BLOOM', 'ERNIE'], 'Developer': ['Google', 'OpenAI', 'BigScience', 'Baidu'], 'Main Features': [ 'Efficient parameter configuration; excellent zero-shot/few-shot adaptation', 'Wide application scope; superior dialogue understanding and generation quality', 'Supports over two hundred languages; good cross-cultural compatibility', 'Combines large-scale knowledge graphs; optimized for Chinese' ] } df = pd.DataFrame(data) print(df) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值