我终于做出了自己满意的大模型工具(已开源),学习大模型收藏我这篇就够了

起因是 ChatGPT 由于不可抗力使用实在困难,使用魔法创建的账号也时常遭到封禁,所以想到了使用一些国内 API 供应商的办法通过 API Key 的形式使用 ChatGPT。

尝试了很多通过 API Key 来一键部署和使用大模型的网页和软件,但感觉总是差那么点意思。

于是在去年12月份,我萌生了自己做一个大模型桌面工具的想法,并在一个月后有了第一个版本。

八个月过去了,这个软件已经迭代了 13 次版本。我是个对细节比较挑剔的人,所以直到现在,认为这个工具已经能用好用的情况下,才决定拿出来和大家一起分享下(官网地址):

image.png

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

工具介绍

使用 Gomoon,你只需要将购买的厂商 API key 填入到设置页面,就可以使用对应的大模型了,同时也可以通过本地调用的方式使用本地大模型。

以下是模型 API 配置示例图:

image.png

助手功能🤖

Gomoon 内置了一些常用的助手,例如翻译助手,计算器,前端专家等。你可以直接使用这些助手进行提问:

image.png

当然,你也可以点击助手进入助手页面,自行配置助手。(这里助手也可以和对应的模型绑定,例如我在用前端助手时需要 GPT4,但是翻译助手 3.5 就够了。)

Gomoon 的助手支持一键导出和导入功能,可以在助手页面和对话页面下方的小工具中点击体验。

未来 Gomoon 还会在官网加上在线上传和分析功能,争取让大家能更方便的使用助手功能,免费获取更多实用的助手能力。

两种对话模式

Gomoon 有两种对话模式,分别是『问答』和『连续对话』。你可以把合适的助手对应创建在两种模式中。

Gomoon 的『问答模式』适合一些需要一次性的回答,例如翻译,总结,计算器,报错分析等。Gomoon 在这种模式下,每次只会携带当前对话的上下文,目的是让每一次对话的 Token 使用量尽量减少,更加省钱,而且没有上文的干扰,准确度也会有所提高。

而『连续对话』则是正常的对话模式,每次都会携带本次对话的所有内容,适合一些连续提问的场景。在连续对话中,你可以对每段对话进行删除、重新生成、中途更换助手和二次编辑,大大提高对话的灵活程度。

快捷键

Gomoon 默认可以使用 ctrl/cmd + G 的形式唤醒或者隐藏,当你把它置顶时,这一功能十分有效,你可以把它摆在 IDE 一旁,边提问边工作,相当于多出来一个 Mentor。

当然快捷键也是可以随意设置的,只要在配置页面进行修改就可以了。

另外,Gomoon 还支持双击复制来快速问答,这一个交互灵感来源于 DeepL。当你需要对单词翻译,或者代码报错分析的时候,就可以使用这一快捷键。

你只需要划选对应的文字,然后ctrl + c + c, 就可以快速调用起 Gomoon 了。使用方法如下所示:

m0ctz-vzbu3.gif

小工具🛠️

Gomoon 内置了很多小工具,例如发送文件,解析图片文字,解析链接等等。你可以在对话栏直接使用粘贴键来将多种类型的内容上传。Gomoon 支持你任意的区组合发送内容(注意:如果你需要对图片直接进行提问,则需要使用GPT4 或 Ollama 支持等图片解析的模型,其他模型则可以使用 Gomoon 自带的图片文字识别功能来提取图片文字)。

Gomoon 同时支持你将对话内容进行导出,支持 markdown 和图片(长截图)两种形式,可以快速的将对话结果分享给其他人。

当然,上述的这些配置都是存储在你本地的,项目也已经开源,所以你不用担心自己的数据会被泄露或者盗用。

对话历史

连续对话时,当你新建了一个对话,Gomoon 会自动将上一次的对话保存在对话历史中。

在对话历史界面,你可以收藏一些对话历史来快速查找。同时 Gomoon 还支持拷贝历史,使用搜索框精确查找历史内容,一键清除非收藏历史等。

当你需要使用某一次的对话,只需要点击对应的历史,其就会快速呈现在对话页面。

记忆胶囊

image.png

所谓的记忆胶囊,就是可以将你上传到 Gomoon 的 markdown 文档进行本地向量化存储,并打包成一个胶囊,此时当你选择了这个胶囊后,对其进行提问,就可以快速得到对应的答案。

例如,这里有一份你所在团队的私域知识,这些知识并不能在网络上查询到,但同时也是你日常需要使用到的知识。这个时候你就可以将这些知识存入到 Gomoon 的记忆胶囊中,后续当你就可以直接对当前记忆胶囊进行提问,获取到你想要的答案了。

Gomoon 中内置了一个『Gomoon 使用指南』的记忆胶囊,可以供大家快速体验记忆胶囊神器的能力:

眼尖的同学可能会发现,这个功能和 RAG 系统可以说是如出一辙。是的,Gomoon 的记忆胶囊功能,本质上就是一个 [embedding 模型]加向量知识库。不同的是,这些能力都是在本地的。也就是说它完全免费并且安全。

在性能上,经过尝试,16g 内存的 mac 和 windows 电脑都可以完成记忆胶囊存储和查询的能力。

主题

Gomoon 除了上面一直看到的默认主题之外,还有『月光白』配色,一款亮色系的颜色,适合那些喜欢白色主题的同学: image.png

对了,Gomoon 默认支持响应式布局,也就是说你可以把 Gomoon 自定义成自己喜欢的尺寸,其中的内容会尽量的产生对应的自定义布局。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值