神经网络动画讲解 - 构建灵活可调节参数

神经网络核心思想

神经网络核心思想:(1)机器学习、深度学习是一种方法论

机器学习: 核心思想是使计算机系统能够从经验(通常是大量数据)中学习和改进,以优化性能并做出准确的预测或决策,而不需要传统意义上的明确编程来指定每一步骤。机器学习算法通过识别数据中的模式和规律,自动调整内部参数以优化模型性能。

深度学习: 机器学习的一个子领域,它专注于构建和训练深度神经网络(DNNs)来解决复杂的问题。深度神经网络具有多个层次的结构,每个层次都能学习到输入数据中的不同级别的抽象特征。通过堆叠多个层次,深度学习模型能够学习到越来越复杂的模式,并在各种任务上取得出色的性能,包括图像识别、语音识别、自然语言处理等。

深度学习方法论强调了从数据中自动学习特征的重要性,而不是依赖手工设计的特征提取方法。 通过反向传播算法和优化技术(如梯度下降),深度学习模型能够逐步调整其内部参数以最小化预测误差,并在训练过程中不断提高性能。 这种自动学习和优化的能力使得深度学习在处理大规模、高维度数据时特别有效。

神经网络核心思想

神经网络核心思想:(2)本质是通过从数据学习得到一个数学函数

神经网络的本质: 通过从数据中学习得到一个数学函数,该函数能够将输入映射到期望的输出。在神经网络中,这个数学函数是由网络的权重(weights)和偏置(biases)等参数定义的。这些参数在训练过程中会进行更新和调整,以最小化预测误差或最大化模型的性能。

神经网络的结构: 由多个神经元(或称为节点)组成,这些神经元以层次结构连接在一起。每个神经元都接收来自前一层神经元的输入,并对这些输入进行加权求和,然后通过一个激活函数(如ReLU、Sigmoid或tanh)产生输出。这个输出将作为下一层神经元的输入。

神经网络模型训练: 在训练过程中,神经网络会接收到大量的标记数据(即带有正确输出的输入数据)。通过使用优化算法(如梯度下降),神经网络会逐步调整其权重和偏置参数,以最小化预测输出与实际输出之间的差异(即损失函数)。这个过程称为反向传播(backpropagation),它允许神经网络从错误中学习,并不断优化其参数。

通过不断迭代训练过程,神经网络的参数将逐渐收敛到一组最优值,这组参数定义了能够将输入映射到期望输出的数学函数。一旦训练完成,神经网络就可以用于对新的、未见过的输入进行预测或分类。

神经网络核心思想

神经网络核心思想:(3)不是编写固定程序,而是构建灵活可调节的参数,调节和微调参数

无需显示编程: 与传统编程方法不同,神经网络不是通过编写固定的、硬编码的规则来执行任务。相反,它们是通过学习和适应数据中的模式来自动调整其内部参数,从而能够处理各种输入并产生相应的输出。这种方法使得神经网络能够处理复杂且多变的任务,而无需显式地定义每一步的执行逻辑。

神经网络核心思想

模型微调: 在训练完成后,神经网络的参数已经被优化到能够处理特定任务的最佳状态。然而,这并不意味着参数一旦确定就不能再改变。相反,如果有了新的数据或任务需求发生变化,可以对神经网络进行微调(fine-tuning)。微调是通过在现有模型的基础上继续训练来改进其性能的过程,它可以使用新的数据或更复杂的优化策略来进一步调整模型的参数。

神经网络核心思想

注释

神经网络动画素材来源于3Blue1Brown,想了解更多查看参考资料网址。

3Blue1Brown 是一个由 Grant Sanderson 创建的YouTube 频道。这个频道从独特的视觉角度解说高等数学,内容包括线性代数、微积分、人工神经网络、黎曼猜想、傅里叶变换以及四元数等。

Grant Sanderson 毕业于斯坦福大学,并获得了数学学士学位。

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值