本报告由北大青鸟人工智能研究院、北大计算机学院、教育学院学习科学实验室联合出品,深度剖析了AI Agent与Agentic AI的核心技术与应用趋势。
系统拆解了Agent的四大模块:感知模块(多模态信息处理)、认知与决策模块(LLM引擎驱动规划与推理)、行动模块(工具调用与MCP协议交互)及架构模式(单Agent/多Agent系统)。通过对比Coze、Manus、Genspark等前沿平台的技术方案,揭示多Agent协作(如A2A协议)与反思性Agent的设计逻辑。
报告同时指出当前技术挑战(幻觉控制、规划鲁棒性、记忆优化)与未来方向(通用智能体演进、伦理治理),并为开发者提供LangGraph/AutoGen等框架的实践参考。学习者可结合《人工智能通识教程》教材与B站“思睿观通”视频深化理解。
深度剖析了AI Agent的核心技术、前沿进展与未来挑战。文档系统解析了Agent的感知-决策-行动技术栈,拆解主流Agent平台(如Coze/Dify/AutoGen),并通过实际案例展示医疗、广告、开发等领域的应用。
适用人群:AI工程师、科研人员、技术决策者及AI技术爱好者,尤其适合需要构建或应用Agent系统的开发者。
文章章节及梗概
第一部分:AI Agent和Agentic AI的兴起
- AI Agent爆发契机:LLM能力跃升+基础设施成熟
- 发展历程:从符号主义AI到LLM驱动的现代Agent
- 核心特质:自主性/目标导向/多步骤任务处理
- 概念区分:Agents vs AI Agents vs Agentic AI
- 应用场景:智能客服/医疗问诊/广告营销案例
- 阶段总结:AI从工具向自主智能体转型
第二部分:AI Agent核心技术栈
- 感知模块:多模态信息处理与状态表征
- 认知与决策:LLM引擎/规划(ReAct/CoT)/记忆(向量库)
- 行动模块:工具调用(MCP协议)/代码执行/物理交互
- 架构模式:单Agent vs 多Agent系统(A2A协议)
- 构建步骤:目标定义→引擎选择→记忆机制→迭代优化
第三部分:主流Agent平台拆解
- 低代码平台:Coze(字节)/Dify(开源)/FastGPT(知识库专精)
- 开发框架:AutoGen(微软多Agent)/LangGraph(工作流)/CrewAI(协作)
- 终端应用:Genspark(混合Agent)/秘塔AI(搜索)/Perplexity(引用透明)
- 通用Agent:Manus(任务分解)/OpenManus(开源)/Coze空间(双模式)
- 垂直Agent:Lovart(设计)/Gemini DeepResearch(学术)
第四部分:现状与未来
- 当前挑战:幻觉/长程记忆/复杂规划可靠性
- 开放问题:伦理/安全/人机协作机制
- 未来趋势:Agentic RAG/世界模型/社会智能体
- 行动建议:关注MCP-A2A-AGUI协议生态
这份《北京大学AI+Agent与Agentic+AI的原理和应用洞察与未来展望》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
PDF书籍: 完整版本链接获取
👉[CSDN大礼包🎁:《
北京大学AI+Agent与Agentic+AI的原理和应用洞察与未来展望
》免费分享(安全链接,放心点击)]👈