局部投影法stata命令(Local Projection)

局部投影法stata命令(Local Projection)
局部投影法stat
a命令(Local Projection)
局部投影法stata命令(Local
 Projection)
局部投影法stata命令(Local Projecti
on)
局部投影法stata命令(Local Projection)
局部投影法
stata命令(Local Projection)
局部投影法stata命令(L
ocal Projection)
局部投影法stata命令(Local Proj
ection)
局部投影法stata命令(Local Projection)
   
下载链接:https://download.csdn.net/download/weixin_45892228/89153643点击下载:局部投影法stata命令(Local Projection)

在MATLAB中,Local Projection局部投影)通常用于数据可视化,特别是用于降维和探索高维数据集中的局部结构。这种方法也被称为LPP(Local Principal Component Analysis)。以下是实现步骤: 1. 首先,你需要有一个矩阵`X`,其中包含你的数据点。 ```matlab X = ...; % 你的数据矩阵 ``` 2. 确定邻域半径(radius),这将影响每个样本点周围的局部区域。 ```matlab radius = ...; % 根据数据分布选择合适的半径值 ``` 3. 对于每一个数据点,计算其邻居(通常使用k-nearest neighbors,kNN)并构造一个局部图(local graph),比如使用`pdist`函数计算距离,然后`knnsearch`找到最近的邻居。 ```matlab distances = pdist(X); [~, idx] = knnsearch(distances, radius); % 获取每个点的k个邻居索引 ``` 4. 构建一个邻接矩阵`W`,它表示每个点与其邻居之间的相似度。 ```matlab W = squareform(pdist(idx)); % 创建对角线以外的元素为0的邻接矩阵 D = sum(W, 1); % 计算每个节点的度 W = W ./ D; % 归一化邻接矩阵,使其为概率分布 ``` 5. 使用局部图的特征向量来投影数据。可以使用`eig`函数提取低秩矩阵(通常是矩阵`W*X`或`X'*W*X`的前几个左奇异向量),然后选取相应的得分作为新的坐标。 ```matlab [V, ~] = eig(W*X*X', 'lm'); % 或者 V = eig(X'*W*X, 'lm'); % 保留前几列对应最高特征值的V矩阵,用于投影 projected_data = X * V(:, 1:k); % k是所选的维度 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值