经典子空间学习的多视图学习方法——局部保持全局判别投影(Locally Preserving Global Discriminative Projection, LP-GDP)

局部保持全局判别投影(Locally Preserving Global Discriminative Projection, LP-GDP)是一种用于降维的线性投影方法,它结合了局部保持投影(LPP)和全局判别信息

这种方法的目标是在保持数据局部结构的同时,最大化不同类别的可分性,从而在降维后的空间中提高分类性能。

核心思想

LP-GDP通过在降维过程中保留样本的局部几何结构,同时利用全局的类别信息来增强不同类别的可分性。

这种方法在处理高维数据时特别有效,因为它能够保持数据的内在局部邻域关系,同时利用判别信息来提升分类性能。

目标函数

LP-GDP的目标函数可以表示为:

min ⁡ W { tr ( W T S w W ) + β ⋅ tr ( W T S b W ) } \min_{W} \left\{ \text{tr}(W^T S_w W) + \beta \cdot \text{tr}(W^T S_b W) \right\} Wmin{tr(WTSwW)+βtr(WTSbW)}

其中:

  • W W W 是我们要找的投影矩阵
  • S w S_w Sw类内散度矩阵,它描述了同一类别内部的样本差异。
  • S b S_b Sb类间散度矩阵,它描述了不同类别之间的差异。
  • β \beta β 是一个调节参数用于平衡局部保持和全局判别信息的重要性。

公式解析

类内散度矩阵 S w S_w Sw

类内散度矩阵 S w S_w Sw 描述了同一类别内部的样本差异。在LPP中,它通常是基于样本的邻域图构建的,但在LP-GDP中,它可能被重新定义以考虑全局判别信息。

S w = D − A S_w = D - A Sw=DA

其中:

  • D D D度矩阵,对角线元素等于邻接矩阵 A A A 中每一行的和,非对角线元素为0。度矩阵反映每个样本权重或重要性。
  • A A A邻接矩阵,如果样本 i i i j j j邻居,则 A i j > 0 A_{ij} > 0 Aij>0,否则 A i j = 0 A_{ij} = 0 Aij=0。邻接矩阵反映了样本之间的邻域关系。
类间散度矩阵 S b S_b Sb

类间散度矩阵 S b S_b Sb 描述了不同类别之间的差异,它通常由类中心的距离构成。

S b = ∑ i = 1 C N i ( μ i − μ ) ( μ i − μ ) T S_b = \sum_{i=1}^{C} N_i (\mu_i - \mu) (\mu_i - \mu)^T Sb=i=1CNi(μiμ)(μiμ)T

其中:

  • C C C类别数
  • N i N_i Ni 是第 i i i 类的样本数。
  • μ i \mu_i μi 是第 i i i 类的样本均值向量。
  • μ \mu μ所有样本的总均值向量。

优化问题

LP-GDP的目标函数是一个二次优化问题,可以通过求解广义特征值问题来找到最优的投影矩阵 W W W

S b W = λ S w W S_b W = \lambda S_w W SbW=λSwW

其中 λ \lambda λ 是广义特征值。通过求解这个特征值问题,我们可以找到 W W W,它能够最小化类内散度,同时最大化类间散度,从而在降维后的空间中提高不同类别的可分性。

小结

LP-GDP是一种综合了局部保持和全局判别信息的降维方法,它在保持数据局部结构的同时,利用类别信息来提高分类性能。
这种方法在处理具有复杂结构和类别信息的高维数据集时非常有效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值