knn算法介绍,要点,难点,实际应用,案例参考和代码解析

K最近邻(K-Nearest Neighbors,KNN)是一种基本的分类和回归方法,常用于模式识别和数据挖掘。以下是对KNN算法的介绍、要点、难点、实际应用、案例参考和代码解析:

算法介绍:

基本原理:KNN算法基于特征空间中样本的近邻进行分类,其核心思想是如果一个样本在特征空间中的K个最相似(即最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

步骤:

1.计算待分类样本与训练集中各个样本的距离(通常使用欧氏距离或曼哈顿距离等)。

2.选取与待分类样本距离最近的K个样本。

3.统计这K个样本所属类别的频数。

4.将待分类样本归类为频数最高的类别。

要点:

K值选择:K的选择影响着算法的性能,较小的K值会增加模型的复杂度,可能会导致过拟合,而较大的K值会增加模型的偏差,可能会导致欠拟合。

距离度量:选择合适的距离度量方法对于KNN的性能至关重要,常用的距离度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。

数据预处理:KNN算法对特征的尺度敏感,因此需要进行特征缩放或标准化等预处理步骤。

难点:

高维数据:在高维空间中,样本之间的距离变得模糊,这会导致KNN算法的性能下降。

计算复杂度:KNN算法在分类时需要计算待分类样本与所有训练样本之间的距离,因此在大规模数据集上的计算复杂度较高。

实际应用:

模式识别:KNN算法在人脸识别、手写数字识别等领域有广泛应用。

推荐系统:KNN算法可以根据用户历史行为推荐类似的产品或内容。

异常检测:KNN算法可以通过检测离群点来进行异常检测。

案例参考和代码解析:

  1. 案例参考:

使用KNN算法进行鸢尾花分类。

使用KNN算法进行手写数字识别。

代码解析:

Python中可以使用scikit-learn库中的KNeighborsClassifier进行KNN分类器的实现。

以下是一个简单的Python示例代码:

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集

iris = load_iris()

X = iris.data

y = iris.target

# 划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建KNN分类器

knn = KNeighborsClassifier(n_neighbors=3)

# 拟合模型

knn.fit(X_train, y_train)

# 预测

y_pred = knn.predict(X_test)

# 计算准确率

accuracy = accuracy_score(y_test, y_pred)

print("准确率:", accuracy)

这段代码演示了如何使用scikit-learn库中的KNeighborsClassifier来构建一个KNN分类器,并对鸢尾花数据集进行分类预测。

2.模式识别具体案例,代码解析

经典的模式识别案例为例:手写数字识别。在这个案例中,我们将使用K最近邻算法(KNN)来识别手写数字图像。

案例描述:

我们将使用MNIST数据集,这是一个包含大量手写数字图像的经典数据集,每张图像都是28x28像素的灰度图像,标记有相应的数字(0到9)。我们的目标是训练一个KNN分类器,能够根据这些图像正确识别出对应的数字。

代码解析:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_openml

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score

# 加载MNIST数据集

mnist = fetch_openml('mnist_784', version=1)

X, y = mnist['data'], mnist['target']

# 将像素值缩放到0到1之间

X = X / 255.0

# 划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建KNN分类器

knn = KNeighborsClassifier(n_neighbors=3)

# 拟合模型

knn.fit(X_train, y_train)

# 预测

y_pred = knn.predict(X_test)

# 计算准确率

accuracy = accuracy_score(y_test, y_pred)

print("准确率:", accuracy)

# 显示一些预测结果

num_samples = 5

random_indices = np.random.choice(X_test.shape[0], num_samples, replace=False)

for i, idx in enumerate(random_indices):

    plt.subplot(1, num_samples, i+1)

    plt.imshow(X_test[idx].reshape(28, 28), cmap='binary')

    plt.title("Predicted: " + str(y_pred[idx]))

    plt.axis('off')

plt.show()

代码解析:

1.数据加载:使用fetch_openml函数加载MNIST数据集,该数据集包含70000个手写数字图像和相应的标签。

2.数据预处理:将像素值缩放到0到1之间,以加速模型收敛。

3.训练集和测试集划分:使用train_test_split函数将数据集划分为训练集和测试集。

4.创建KNN分类器:使用KNeighborsClassifier类创建一个KNN分类器,设置K值为3。

5.模型拟合:使用训练集数据对KNN分类器进行拟合。

6.模型评估:使用测试集数据对模型进行评估,计算准确率。

7.预测结果展示:随机选择测试集中的几个样本,显示其图像以及模型对其的预测结果。

这段代码演示了如何使用KNN算法进行手写数字识别,通过加载数据、训练模型、预测和评估模型性能,并且展示了一些预测结果图像。

3.推荐系统具体案例,代码解析

案例描述:

我们将创建一个基于用户-物品协同过滤的电影推荐系统。我们将使用MovieLens数据集,该数据集包含用户对电影的评分记录。我们将基于用户对电影的评分记录,利用K最近邻算法(KNN)来推荐给用户相似用户喜欢的电影。

import numpy as np

import pandas as pd

from sklearn.neighbors import NearestNeighbors

# 读取MovieLens数据集

movies = pd.read_csv('movies.csv')

ratings = pd.read_csv('ratings.csv')

# 创建用户-电影矩阵

user_movie_matrix = ratings.pivot_table(index='userId', columns='movieId', values='rating').fillna(0)

# 创建KNN模型

k = 5  # 选择近邻数

knn_model = NearestNeighbors(metric='cosine', algorithm='brute')

knn_model.fit(user_movie_matrix.values)

# 选择一个用户

user_id = 1

# 查找最近邻用户

user_ratings = user_movie_matrix.loc[user_id].values.reshape(1, -1)

distances, indices = knn_model.kneighbors(user_ratings, n_neighbors=k+1)

# 打印最近邻用户的ID

nearest_neighbors = [user_movie_matrix.index[idx] for idx in indices.flatten()][1:]

print("最近邻用户:", nearest_neighbors)

# 根据最近邻用户的评分推荐电影

recommendations = []

for neighbor_id in nearest_neighbors:

    neighbor_ratings = user_movie_matrix.loc[neighbor_id]

    unrated_movies = neighbor_ratings[neighbor_ratings == 0].index

    rated_movies = neighbor_ratings[neighbor_ratings > 0].index

    recommendations.extend(unrated_movies)

recommendations = list(set(recommendations))  # 去重

print("推荐电影:", recommendations[:10])

代码解析

1.数据加载:我们使用Pandas库读取MovieLens数据集中的电影和评分数据。

2.创建用户-电影矩阵:我们将评分数据转换为用户-电影矩阵,其中行代表用户,列代表电影,矩阵元素为用户对电影的评分。

3.创建KNN模型:我们使用NearestNeighbors类创建一个KNN模型,选择余弦相似度作为距离度量。

4.选择一个用户:我们选择一个用户作为示例。

5.查找最近邻用户:我们使用KNN模型查找与选定用户最相似的K个用户。

6.根据最近邻用户的评分推荐电影:对于每个最近邻用户,我们找到其评分过但选定用户未评分的电影,将这些电影作为推荐列表。

这段代码演示了如何基于K最近邻算法构建一个简单的电影推荐系统,通过找到相似用户并推荐相似用户喜欢的电影来为指定用户生成推荐列表。

4.异常检测具体案例,代码解析

让我们来实现一个基于高斯混合模型(Gaussian Mixture Model, GMM)的异常检测系统。我们将使用一个虚拟的数据集,并通过GMM来识别数据中的异常点。

案例描述:

我们将创建一个包含正常数据和异常数据的虚拟数据集。然后,我们将使用GMM来对数据进行建模,并识别具有低概率密度的数据点作为异常点。

代码解析:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.mixture import GaussianMixture

# 创建虚拟数据集

np.random.seed(0)

normal_data = np.random.normal(loc=0, scale=1, size=(1000, 2))  # 正常数据

anomaly_data = np.random.normal(loc=4, scale=1, size=(20, 2))   # 异常数据

# 将正常数据和异常数据合并

data = np.vstack([normal_data, anomaly_data])

# 使用GMM拟合数据

gmm = GaussianMixture(n_components=2, covariance_type='full')

gmm.fit(data)

# 计算每个数据点的概率密度

probabilities = np.exp(gmm.score_samples(data))

# 设置阈值,识别异常点

threshold = np.percentile(probabilities, 5)  # 选择概率密度最低的5%作为异常点阈值

# 标记异常点

anomalies = data[probabilities < threshold]

# 绘制数据点

plt.scatter(normal_data[:, 0], normal_data[:, 1], label='Normal Data')

plt.scatter(anomaly_data[:, 0], anomaly_data[:, 1], color='r', label='Anomaly Data')

plt.scatter(anomalies[:, 0], anomalies[:, 1], color='y', label='Detected Anomalies')

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

plt.title('Anomaly Detection using Gaussian Mixture Model')

plt.legend()

plt.show()

代码解析:

1.创建虚拟数据集:我们使用numpy.random.normal函数生成正态分布的正常数据和异常数据。

2.合并数据:我们将正常数据和异常数据合并成一个数据集。

3.使用GMM拟合数据:我们使用sklearn.mixture.GaussianMixture来拟合数据,并选择适当的高斯分布数量和协方差类型。

4.计算概率密度:我们计算每个数据点的概率密度。

5.设置阈值:我们选择概率密度最低的5%作为异常点的阈值。

6.标记异常点:我们根据阈值将概率密度低于阈值的数据点标记为异常点。

7.绘制数据点:我们将正常数据、异常数据和识别出的异常点绘制在二维散点图上。

如有更多问题,请联系我

  • 34
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风非37

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值