% 步骤1:准备数据
% 假设你有一个交通量回归预测的数据集,包括输入特征 X 和对应的目标值 Y
% 步骤2:数据预处理
% 对输入特征 X 进行预处理,例如归一化、平滑处理等
% 步骤3:DBO-KELM模型训练
% 定义模型的网络结构和参数
% 定义DBO-KELM模型参数
numHiddenNeurons = 100; % 隐藏神经元的数量
C = 1; % 正则化参数
% 定义核函数
kernel = @(X1, X2) kernelFunction(X1, X2, kernelParam);
% 使用蜣螂算法优化核极限学习机
[bestC, bestKernelParam] = fireflyAlgorithm(X, Y, numHiddenNeurons, C, kernel);
% 训练DBO-KELM模型
model = trainKELM(X, Y, bestC, bestKernelParam, numHiddenNeurons, kernel);
% 步骤4:模型预测
% 使用训练好的模型对新样本进行预测
Y_pred = predictKELM(model, X_test);
% 步骤5:性能评估
% 对预测结果进行性能评估,例如计算均方误差、相关系数等
mse = mean((Y_pred - Y_test).^2);
correlation = corr(Y_pred, Y_test);
% 可以根据需要进行其他的模型评估和分析操作