% 导入雷达辐射源数据集
load(‘radar_dataset.mat’); % 导入雷达辐射源数据集,包含输入特征和类别标签
% 数据预处理
X = radar_dataset(:, 1:end-1); % 输入特征
Y = radar_dataset(:, end); % 类别标签
% 归一化处理
Xnorm = normalize(X);
% 将类别标签转换为独热编码
Yoh = categorical(Y);
% 定义问题的参数和函数
nVar = size(Xnorm, 2); % 输入特征数量
VarSize = [1 nVar]; % 个体大小
MaxIt = 100; % 最大迭代次数
nPop = 50; % 种群数量
% 定义CSA算法的参数
alpha = 0.1; % 步长调节参数
sigma = 0.1; % 扰动参数
% 初始化种群
empty_chameleon.Position = [];
empty_chameleon.Cost = [];
chameleons = repmat(empty_chameleon, nPop, 1);
% 初始化最优解
best_chameleon.Cost = inf;
% 初始化种群
for i = 1:nPop
% 随机生成解
chameleons(i).Position = unifrnd(-1, 1, VarSize);
% 计算适应度
chameleons(i).Cost = CostFunction(chameleons(i).Position, Xnorm, Yoh);
% 更新最优解
if chameleons(i).Cost < best_chameleon.Cost
best_chameleon = chameleons(i);
end
end
% 迭代优化
for it = 1:MaxIt
for i = 1:nPop
% 获取当前个体
chameleon = chameleons(i);
% 生成新解
perturbation = sigma * randn(VarSize);
chameleon.Position = chameleon.Position + alpha * perturbation;
% 边界处理
chameleon.Position = max(chameleon.Position, -1);
chameleon.Position = min(chameleon.Position, 1);
% 计算适应度
chameleon.Cost = CostFunction(chameleon.Position, Xnorm, Yoh);
% 更新最优解
if chameleon.Cost < best_chameleon.Cost
best_chameleon = chameleon;
end
% 存储新解
chameleons(i) = chameleon;
end
end
% CNN模型构建和训练
% 在这里添加构建和训练CNN模型的代码
% 适应度函数(用于计算个体的适应度)
function cost = CostFunction(position, Xnorm, Yoh)
% 在这里添加构建和训练CNN模型的代码,并计算个体的适应度
end