【CNN分类】基于变色龙优化算法CSA实现雷达辐射源识别附matlab代码

% 导入雷达辐射源数据集
load(‘radar_dataset.mat’); % 导入雷达辐射源数据集,包含输入特征和类别标签

% 数据预处理
X = radar_dataset(:, 1:end-1); % 输入特征
Y = radar_dataset(:, end); % 类别标签

% 归一化处理
Xnorm = normalize(X);

% 将类别标签转换为独热编码
Yoh = categorical(Y);

% 定义问题的参数和函数
nVar = size(Xnorm, 2); % 输入特征数量
VarSize = [1 nVar]; % 个体大小
MaxIt = 100; % 最大迭代次数
nPop = 50; % 种群数量

% 定义CSA算法的参数
alpha = 0.1; % 步长调节参数
sigma = 0.1; % 扰动参数

% 初始化种群
empty_chameleon.Position = [];
empty_chameleon.Cost = [];
chameleons = repmat(empty_chameleon, nPop, 1);

% 初始化最优解
best_chameleon.Cost = inf;

% 初始化种群
for i = 1:nPop
% 随机生成解
chameleons(i).Position = unifrnd(-1, 1, VarSize);

% 计算适应度
chameleons(i).Cost = CostFunction(chameleons(i).Position, Xnorm, Yoh);

% 更新最优解
if chameleons(i).Cost < best_chameleon.Cost
    best_chameleon = chameleons(i);
end

end

% 迭代优化
for it = 1:MaxIt
for i = 1:nPop
% 获取当前个体
chameleon = chameleons(i);

    % 生成新解
    perturbation = sigma * randn(VarSize);
    chameleon.Position = chameleon.Position + alpha * perturbation;
    
    % 边界处理
    chameleon.Position = max(chameleon.Position, -1);
    chameleon.Position = min(chameleon.Position, 1);
    
    % 计算适应度
    chameleon.Cost = CostFunction(chameleon.Position, Xnorm, Yoh);
    
    % 更新最优解
    if chameleon.Cost < best_chameleon.Cost
        best_chameleon = chameleon;
    end
    
    % 存储新解
    chameleons(i) = chameleon;
end

end

% CNN模型构建和训练
% 在这里添加构建和训练CNN模型的代码

% 适应度函数(用于计算个体的适应度)
function cost = CostFunction(position, Xnorm, Yoh)
% 在这里添加构建和训练CNN模型的代码,并计算个体的适应度
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值