基于Transformer的锂电池剩余寿命预测
摘要
随着科技的飞速发展,锂电池在电子设备、电动汽车等诸多领域得到了广泛应用。准确预测锂电池的剩余寿命,对于保障设备性能、提升安全性以及降低运营成本具有至关重要的意义。传统的锂电池剩余寿命预测方法存在一定局限性,难以满足日益增长的实际需求。基于此,本研究引入Transformer模型,该模型凭借其独特的注意力机制,能够深度挖掘数据间的潜在关联,有效捕捉锂电池性能退化的复杂特征。在预测精度方面,基于Transformer的预测方法展现出显著优势,相较于传统方法,能够更准确地预估锂电池的剩余寿命。同时,在计算效率上,该模型通过并行计算等方式,大幅提升了预测速度,满足实时性要求。此外,Transformer模型还具有较强的通用性和可扩展性,为锂电池剩余寿命预测领域提供了新的技术思路与发展方向。
关键词
锂电池;剩余寿命预测;Transformer模型;注意力机制;数据处理
Abstract
With the continuous development of modern technology, lithium batteries have been widely applied in