一文彻底搞懂自然语言处理 - 词嵌入(Word Embedding)

在自然语言处理中,词汇通常被表示为离散的符号(如独热编码One-Hot Encoding)****。但独热编码存在维度灾难和语义缺失,导致计算复杂且无法表达词汇间关系。为了解决这些问题,词嵌入技术应运而生。

词嵌入(Word Embedding)是NLP中的一个关键技术,它能够将词汇****从离散的符号表示转换为连续的向量表示****,从而方便后续的深度学习模型进行处理。****

Word Embedding

一、One-Hot Encoding__

什么是独热编码(one-hot 编码)?独热编码的基本思想是为词汇表中的每个词汇分配一个唯一的向量。这个向量的长度等于词汇表的大小,向量中的每个元素都是0,除了代表该词汇的那个位置是1。

例如,假设我们的词汇表为 {“Biscoe”, “Dream”, “Torgensen”},那么“Biscoe”可以表示为 [1, 0, 0],“Dream”表示为 [0, 1, 0],“Torgensen”表示为 [0, 0, 1]。

为什么独热编码是个糟糕的选择独热编码在自然语言处理中因维度灾难造成计算负担**,且由于语义缺失无法表达词汇间的相关性,因此通常不被视为理想选择。**

  1. 维度灾难:随着词汇表的增大,向量的维度也会增大,导致计算和存储的复杂度增加。

  2. 语义缺失:独热编码无法表达词汇之间的语义关系,因为任何两个不同词汇的向量之间的点积都是0。

二、Word2Vec

****Word2Vec**是什么?**Word2Vec 是由 Google 在 2013 年提出的一种词嵌入技术,它利用神经网络将词汇映射到低维向量空间中。

Word2Vec 有两种主要的模型结构:CBOW(Continuous Bag of Words)和 Skip-Gram。

**什么是CBOW(连续词袋模型)?**CBOW 模型根据上下文(context)预测当前词(target word)。

CBOW模型类似于一个高级的完型填空游戏,其中上下文中的词汇(已知选项)被用来“填空”预测出缺失的中心词(答案)。

  • 输入层:将上下文词汇的 one-hot 编码作为输入。

  • 投影层:通过一个权重矩阵 W,将输入层的 one-hot 编码转换为连续的向量表示(即嵌入向量)。

  • 隐藏层:对投影层的向量进行平均或求和操作,得到一个上下文向量。

  • 输出层:通过另一个权重矩阵 W’ 和 softmax 函数,计算当前词的概率分布。

CBOW 模型的目标是最小化预测当前词的概率分布的负对数似然。

**什么是Skip-Gram(跳字模型)?**Skip-Gram 模型则根据当前词预测上下文。

Skip-Gram模型如同一个词汇侦探,通过当前词“线索”去“追踪”并预测其周围的上下文词汇。

  • 输入层:将当前词的 one-hot 编码作为输入。

  • 投影层:通过一个权重矩阵 W,将输入层的 one-hot 编码转换为连续的向量表示(即嵌入向量)。

  • 隐藏层:此层实际上与投影层共用相同的嵌入向量。

  • 输出层:对于每个上下文词汇,通过另一个权重矩阵 W’ 和 softmax 函数,计算其概率分布。

Skip-Gram 模型的目标是最小化预测上下文词汇的概率分布的负对数似然。

为了帮助更多人(AI初学者、IT从业者)从零构建AI底层架构,培养Meta Learning能力;提升AI认知,拥抱智能时代。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值