在自然语言处理中,词汇通常被表示为离散的符号(如独热编码One-Hot Encoding)****。但独热编码存在维度灾难和语义缺失,导致计算复杂且无法表达词汇间关系。为了解决这些问题,词嵌入技术应运而生。
词嵌入(Word Embedding)是NLP中的一个关键技术,它能够将词汇****从离散的符号表示转换为连续的向量表示****,从而方便后续的深度学习模型进行处理。****
Word Embedding
一、One-Hot Encoding__
什么是独热编码(one-hot 编码)?独热编码的基本思想是为词汇表中的每个词汇分配一个唯一的向量。这个向量的长度等于词汇表的大小,向量中的每个元素都是0,除了代表该词汇的那个位置是1。
例如,假设我们的词汇表为 {“Biscoe”, “Dream”, “Torgensen”},那么“Biscoe”可以表示为 [1, 0, 0],“Dream”表示为 [0, 1, 0],“Torgensen”表示为 [0, 0, 1]。
为什么独热编码是个糟糕的选择?独热编码在自然语言处理中因维度灾难造成计算负担**,且由于语义缺失无法表达词汇间的相关性,因此通常不被视为理想选择。**
-
维度灾难:随着词汇表的增大,向量的维度也会增大,导致计算和存储的复杂度增加。
-
语义缺失:独热编码无法表达词汇之间的语义关系,因为任何两个不同词汇的向量之间的点积都是0。
二、Word2Vec
****Word2Vec**是什么?**Word2Vec 是由 Google 在 2013 年提出的一种词嵌入技术,它利用神经网络将词汇映射到低维向量空间中。
Word2Vec 有两种主要的模型结构:CBOW(Continuous Bag of Words)和 Skip-Gram。
**什么是CBOW(连续词袋模型)?**CBOW 模型根据上下文(context)预测当前词(target word)。
CBOW模型类似于一个高级的完型填空游戏,其中上下文中的词汇(已知选项)被用来“填空”预测出缺失的中心词(答案)。
-
输入层:将上下文词汇的 one-hot 编码作为输入。
-
投影层:通过一个权重矩阵 W,将输入层的 one-hot 编码转换为连续的向量表示(即嵌入向量)。
-
隐藏层:对投影层的向量进行平均或求和操作,得到一个上下文向量。
-
输出层:通过另一个权重矩阵 W’ 和 softmax 函数,计算当前词的概率分布。
CBOW 模型的目标是最小化预测当前词的概率分布的负对数似然。
**什么是Skip-Gram(跳字模型)?**Skip-Gram 模型则根据当前词预测上下文。
Skip-Gram模型如同一个词汇侦探,通过当前词“线索”去“追踪”并预测其周围的上下文词汇。
-
输入层:将当前词的 one-hot 编码作为输入。
-
投影层:通过一个权重矩阵 W,将输入层的 one-hot 编码转换为连续的向量表示(即嵌入向量)。
-
隐藏层:此层实际上与投影层共用相同的嵌入向量。
-
输出层:对于每个上下文词汇,通过另一个权重矩阵 W’ 和 softmax 函数,计算其概率分布。
Skip-Gram 模型的目标是最小化预测上下文词汇的概率分布的负对数似然。
为了帮助更多人(AI初学者、IT从业者)从零构建AI底层架构,培养Meta Learning能力;提升AI认知,拥抱智能时代。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓