在当今信息爆炸的时代,我们面临着海量数据的挑战。对于人们来说,从这些数据中检索到有用的信息变得越来越困难。为了解决这一问题,研究人员提出了一种新颖的技术,即RAG(Retrieval-Augmented Generation,检索增强生成)。
RAG结合了检索和生成的方法,使得从大规模数据中提取信息变得更加高效和准确。
本文将介绍RAG的定义、工作原理以及它所解决的问题。
RAG是什么?
RAG是一种基于预训练的深度学习模型,旨在通过结合检索和生成的方式提高数据检索的精度和效率。它是基于GPT(Generative Pre-trained Transformer,预训练生成式转换器)模型的进一步发展,通过引入检索机制,使得模型能够在生成过程中利用外部知识源。具体而言,RAG的架构由两个主要组件组成:检索器(Retriever)和生成器(Generator)。
- 检索器负责从大规模的数据集中检索相关的信息
- 生成器则使用检索到的信息来生成响应
这种结合的方式使得RAG能够在生成过程中获得更准确和相关的内容,从而提供更有价值的结果。
RAG解决了什么问题?
传统的基于检索的方法往往面临两个主要问题:信息过载和结果的准确性。
- 信息过载指的是在大规模数据集中找到相关信息的困难
- 结果的准确性则是由于生成模型的局限性,导致生成的内容可能缺乏相关性
RAG通过引入检索机制,有效地解决了这两个问题。
- 首先,