想必有很多人,肯定也会遇到这些问题。RAGflow和Dify在本地化安装的时候,redis进行了冲突了,导致了dify不能实现。
后面通过Deepseek帮助进行一系列的问题的解答,我经历了配置文件的各种修改,docker服务的创建修改,然后.........终于彻底不能使用了
Dify直接访问失败了,docker创建了很多重复的服务,docker默认安装在C盘,空间直接拉爆,马上C盘都爆满了。
所以痛并思痛,我这里决定从头来吧。从Docker开始进行重新改造。
Docker 改造
重新安装Docker。将原有的应用卸载。
重装后将原来默认的/user/local/Docker/wsl路径,改为自己自定义的路径。
重装后,也是有报错。
将原有的卸载的内容,进行删除。相关的注册表的内容,也进行删除。
在通过 wsl -- update 进行修复。
RAGflow 和 Dify 问题解决
默认情况下,dify不能和ragflow放到同一台服务器,因为redis环境变量会出现冲突!
RAGFlow解析文件时,会出现报错:AssertionError("Can't access Redis, Please check the Redis' status.")
这个是造成冲突不能使用的根本原因。
我们的解决办法是:docker-compose -p dify up -d。
p 参数的作用
命名隔离:
使用不同的项目名称可以避免不同项目之间的容器、网络和卷的命名冲突。
例如,如果你有两个项目分别使用 docker-compose,它们的容器名称可能会冲突。通过指定不同的项目名称,可以确保它们的资源(如容器、网络、卷)是独立的。
管理方便:
通过指定项目名称,可以更方便地管理和操作特定的项目,而不会影响其他项目。
那我们通过在各自项目的Dokcer中,输入下面的命令,
docker-compose -p dify up -d
docker compose -p ragflow -f docker-compose.yml up -d
那重启启动后的Docker,可以看下,按照ragflow和dify进行区分。这样就可以解决了之前不能冲突的问题了。
但是Docker都安装运行后,CPU扛不住啊。
Dify 连接 RAGflow
创建知识库,连接外部的知识库。
Name: 自定义名称。
API Endpoint: 填写 http://<内网 IP>:9380/api/v1/dify(将 <内网 IP> 替换为 RAGFlow 所在主机的内网 IP)。
API Key: 填写之前在 RAGFlow 中创建的 API Key。
将RAGflow知识库中的id,我们进行配置。连接即可。
Dify链接效果测试
Dify中创建一个应用,进行测试。
到这里了,基本的测试已经完成了。终于遇到的坑还是不少的,通过Deepseek也是有一定的解答,帮助我进行了很多问题的解答。其实在设置里发现了很多Ragflow里需要设置的内容,后面在进行详细的介绍,大家可以相互学习下。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓