《DeepSeek大模型及其企业应用》由厦门大学大数据教学团队林子雨副教授领衔编写,是一份面向企业人员的实用指南。该报告是系列报告的第三篇,系统梳理了大模型技术发展脉络,聚焦DeepSeek的核心能力与行业落地路径,结合丰富的应用案例与部署方案,为企业探索AI转型提供全方位参考。
系列共四篇,我也会持续关注,及时更新。
《第一篇:大模型概念、技术与应用实践》旨在以通俗易懂的方式系统解析大模型的核心概念、技术原理及行业应用,为读者提供从理论到实践的全方位指导。该指南以翔实的案例、清晰的逻辑与前瞻的视角,为读者揭开了大模型技术的神秘面纱,既是入门者的知识地图,也是从业者的实用手册。
《第二篇:DeepSeek大模型赋能高校教学和科研》则聚焦大模型技术如何助力高等教育创新。该报告以非技术视角系统解析人工智能前沿发展,为高校师生提供从理论认知到实践落地的全景指南。
《第三篇:DeepSeek大模型及其企业应用》各章节内容主要如下:
1. 大模型:人工智能的前沿
从概念、发展历程、技术分类到与AI的关系,解析大模型的“大”特性及核心能力(如上下文理解、语言生成),梳理GPT、DeepSeek等模型的参数演进与算力需求。
2. 大模型产品
对比国内外主流大模型(ChatGPT、Gemini、Sora、DeepSeek-V3),分析国内厂商(如百度文心一言、字节豆包)的技术特色,评测“幻觉”风险与非幻觉率。
3. 大模型的行业应用
覆盖自然语言处理、计算机视觉、医疗、金融等12大领域,列举DeepSeek在客户服务、个性化推荐、教育、法律等场景的40+高频用例,凸显效率提升与成本优化价值。
4. 企业大模型落地方案
提出赋能企业的四大维度(效率、质量、流程、成本),详解七大场景(对话助手、知识管理、编码助手),探讨云端/本地/混合部署方式,并提供成本核算与规划路线图。
5. 智能体的企业应用
区分智能体与RAG技术,介绍生产力、数据分析、客户服务等8类智能体,结合OpenAI Operator、Link-AI等产品案例,分析智能体在自动化决策与流程重塑中的作用。
6. 厂商提供的企业级服务
总结云端、本地、混合部署解决方案,推荐DeepSeek大模型一体机,提出企业选型十大考察维度(响应速度、输入长度、知识库构建难度等),强调专业顾问的重要性。
7. 大模型典型应用案例
展示瑞金医院病理诊断、东莞制造业优化、云南白药数据清洗等实践,体现大模型在医疗、制造、医药等领域的降本增效成果。
8. AIGC与企业应用实践
解析文本、图像、语音、视频生成技术,提供DeepSeek+Kimi制作PPT、腾讯智影生成数字人视频等实操指南,覆盖办公、设计、编程等场景。
9. 大模型未来发展趋势
预测多模态融合、具身智能、端侧模型、小模型高效化等方向,强调推理能力提升与行业渗透加速,展望AI重构千行万业的黄金时代。
以下是文档的部分内容,全文148页:
下方扫码获取厦大3篇文档合集
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】