CW对抗样本生成算法 torch实现_cw对抗攻击

还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!

王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。

对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!

【完整版领取方式在文末!!】

93道网络安全面试题

需要体系化学习资料的朋友,可以加我V获取:vip204888 (备注网络安全)

内容实在太多,不一一截图了

黑客学习资源推荐

最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

1️⃣零基础入门
① 学习路线

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

image

② 路线对应学习视频

同时每个成长路线对应的板块都有配套的视频提供:

image-20231025112050764

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

s.t.

c

(

x

ϵ

)

=

t

x

ϵ

[

0

,

1

]

n

\begin{aligned} & \text{minimize} \quad D(x, x + \epsilon) \ & \text{s.t.} \quad c(x + \epsilon) = t \ & \quad x + \epsilon \in [0, 1]^n \end{aligned}

​minimizeD(x,x+ϵ)s.t.c(x+ϵ)=tx+ϵ∈[0,1]n​

然而由于

C

(

x

ε

)

=

t

C(x+\varepsilon)=t

C(x+ε)=t是高度非线性的,因此现有的算法都难以直接求解,上面的式子,所以需要选择一种更适合优化的表达方式。即定义一个目标函数

f

f

f,当且仅当

f

(

x

ε

)

0

f(x+\varepsilon)\le0

f(x+ε)≤0时,

C

(

x

ε

)

=

t

C(x+\varepsilon)=t

C(x+ε)=t。我们可以用如下的一个式子来当做

f

f

f。

f

(

x

)

=

(

m

a

x

i

t

(

F

(

x

)

i

)

F

(

x

)

t

)

f(x’) = (max_{i\ne t}(F(x’)_i)-F(x’)_t)^+

f(x′)=(maxi=t​(F(x′)i​)−F(x′)t​)+
式中,

t

t

t表示定向攻击标签,

(

)

(*)^+

(∗)+表示

m

a

x

(

,

0

)

;

max(*,0);

max(∗,0);,

F

(

x

)

i

F(x’)_i

F(x′)i​表示当神经网络输入为

x

x’

x′时,产生类别是

i

i

i的概率;

Z

(

x

)

Z(x’)

Z(x′)表示softmax层前的输出,即

F

(

x

)

=

s

o

f

t

m

a

x

(

Z

(

x

)

)

F(x)=softmax(Z(x))

F(x)=softmax(Z(x));

l

o

s

s

F

,

t

(

x

)

loss_{F,t}(x’)

lossF,t​(x′)为交叉熵。
上面给出的

f

(

x

)

f(x)

f(x),

m

a

x

i

t

(

F

(

x

)

i

)

max_{i\ne t}(F(x’)_i)

maxi=t​(F(x′)i​)表示除了目标类别

t

t

t外,模型当前输入认为最有可能属于类别

i

i

i,输入类别

i

i

i的概率依旧小于类别

t

t

t的概率,认为此时攻击成功。换言之,就是当识别为类别

t

t

t的概率最大时,认为攻击成功。
所以可以对公式进行重新改写。

minimize

D

(

x

,

x

ε

)

s.t.

f

(

x

ϵ

)

0

x

ε

[

0

,

1

]

n

\begin{aligned} & \text{minimize} \quad D(x, x + \varepsilon) \ & \text{s.t.} \quad f(x + \epsilon) \le 0\ & \quad x + \varepsilon \in [0, 1]^n \end{aligned}

​minimizeD(x,x+ε)s.t.f(x+ϵ)≤0x+ε∈[0,1]n​
这个地方应该还是

x

ϵ

[

0

,

1

]

n

x + \epsilon \in [0, 1]^n

x+ϵ∈[0,1]n好一点,原书的公式不带上标n,不清楚为什么。
将上述的约束条件转换为目标函数,令距离度量函数

D

D

D为

L

p

L_p

Lp​范数,得到以下约束:

m

i

n

δ

p

c

f

(

x

ε

)

s

.

t

.

x

ε

[

0

,

1

]

n

min\quad||\delta||_p+cf(x+\varepsilon)\ s.t. \quad x+\varepsilon \in [0,1]^n

min∣∣δ∣∣p​+cf(x+ε)s.t.x+ε∈[0,1]n
其中的

δ

p

||\delta||_p

∣∣δ∣∣p​项即上面式子中的

D

(

x

,

x

ε

)

D(x, x + \varepsilon)

D(x,x+ε),这一项代表着对抗样本和原始样本的

L

2

L_2

L2​范数距离,也就是扰动,回顾对抗样本生成的目标:“生成样本与原始干净样本尽量的相似”,使这一项最小化,就保证了生成的对抗样本与原始样本尽可能地相似;

c

f

(

x

ε

)

cf(x+\varepsilon)

cf(x+ε)表示分类结果越符合目标结果越好,上面给出的

f

(

x

)

f(x)

f(x)中,如果

F

(

x

)

t

F(x’)_t

F(x′)t​越大(即分类为目标类的概率越大),那么

c

f

(

x

ε

)

cf(x+\varepsilon)

cf(x+ε)的值越小,也就为了满足生成对抗样本的第二个要求:生成样本确实能成功攻击模型。

由于对抗样本增加、减去剃度之后很容易超出

[

0

,

1

]

[0,1]

[0,1]的范围,为了生成有效的图片,需要对其进行约束,使得

0

x

i

δ

i

1

0\le x_i+\delta_i \le 1

0≤xi​+δi​≤1。对生成样本进行clip截断就可以将其约束在[0,1]的范围内,我们可以现在只需不断的进行迭代,找到最小值就可以生成对抗样本了。

然而,使用截断的思想,但会使攻击性能下降,CW算法提出的思想,将其映射到tanh空间,为此,CW算法作者引入了新的变量

w

w

w。

x

δ

=

1

2

(

t

a

n

h

(

w

)

1

)

δ

=

1

2

(

t

a

n

h

(

w

)

1

)

x

x+\delta = \frac{1}{2}(tanh(w)+1)\ \delta = \frac{1}{2}(tanh(w)+1)-x

x+δ=21​(tanh(w)+1)δ=21​(tanh(w)+1)−x

因为tanh函数的值域为

[

1

,

1

]

[-1,1]

[−1,1],所以

x

δ

x+\delta

x+δ的取值范围是

[

0

,

1

]

[0,1]

[0,1],这样就满足了约束条件。

下面给出已CW算法的

L

2

L_2

L2​范数攻击定义式

m

i

n

i

m

i

z

e

1

2

(

t

a

n

h

(

w

)

1

)

x

2

2

c

f

(

1

2

(

t

a

n

h

(

w

)

1

)

)

f

(

x

)

=

m

a

x

(

m

a

x

{

Z

(

x

)

i

:

i

t

}

Z

(

x

)

t

,

K

)

minimize \quad ||\frac{1}{2}(tanh(w)+1)-x||_2^2+cf(\frac{1}{2}(tanh(w)+1))\ f(x’)=max(max{ Z(x’)_i:i\ne t }-Z(x’)_t, -K)

minimize∣∣21​(tanh(w)+1)−x∣∣22​+cf(21​(tanh(w)+1))f(x′)=max(max{Z(x′)i​:i=t}−Z(x′)t​,−K)

f

f

f在式中添加了参数

K

K

K,改参数能够控制误分类发生的置信度。保证找到的对抗样本

x

x’

x′能够以较好的置信度被误分为类别

t

t

t。最初我自己看的时候不好理解,下面给出两个式子大家理解一下。

2.1 对于K的理解

先看第一种:

假设现在有

K

=

0.2

K=0.2

K=0.2,且假设此时

m

a

x

{

Z

(

x

)

i

:

i

t

}

Z

(

x

)

t

K

max{ Z(x’)_i:i\ne t }-Z(x’)_t \le -K

max{Z(x′)i​:i=t}−Z(x′)t​≤−K,即

f

(

x

)

=

m

a

x

(

m

a

x

{

Z

(

x

)

i

:

i

t

}

Z

(

x

)

t

,

K

)

=

K

f(x’)=max(max{ Z(x’)_i:i\ne t }-Z(x’)_t, -K)=-K

f(x′)=max(max{Z(x′)i​:i=t}−Z(x′)t​,−K)=−K,那么式可以变成

m

i

n

i

m

i

z

e

1

2

(

t

a

n

h

(

w

)

1

)

x

2

2

c

(

0.2

)

f

(

x

)

=

K

=

0.2

minimize \quad ||\frac{1}{2}(tanh(w)+1)-x||_2^2+c*(-0.2)\ f(x’)=-K=-0.2

minimize∣∣21​(tanh(w)+1)−x∣∣22​+c∗(−0.2)f(x′)=−K=−0.2
再看第二种:

假设现在有

K

=

0.8

K=0.8

K=0.8,且假设此时

m

a

x

{

Z

(

x

)

i

:

i

t

}

Z

(

x

)

t

K

max{ Z(x’)_i:i\ne t }-Z(x’)_t \le -K

max{Z(x′)i​:i=t}−Z(x′)t​≤−K,即

f

(

x

)

=

m

a

x

(

m

a

x

{

Z

(

x

)

i

:

i

t

}

Z

(

x

)

t

,

K

)

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

需要体系化学习资料的朋友,可以加我V获取:vip204888 (备注网络安全)

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以点击这里获取

Z

(

x

)

t

,

K

)

=

K

f(x’)=max(max{ Z(x’)_i:i\ne t }-Z(x’)_t, -K)=-K

f(x′)=max(max{Z(x′)i​:i=t}−Z(x′)t​,−K)=−K,那么式可以变成

m

i

n

i

m

i

z

e

1

2

(

t

a

n

h

(

w

)

1

)

x

2

2

c

(

0.2

)

f

(

x

)

=

K

=

0.2

minimize \quad ||\frac{1}{2}(tanh(w)+1)-x||_2^2+c*(-0.2)\ f(x’)=-K=-0.2

minimize∣∣21​(tanh(w)+1)−x∣∣22​+c∗(−0.2)f(x′)=−K=−0.2
再看第二种:

假设现在有

K

=

0.8

K=0.8

K=0.8,且假设此时

m

a

x

{

Z

(

x

)

i

:

i

t

}

Z

(

x

)

t

K

max{ Z(x’)_i:i\ne t }-Z(x’)_t \le -K

max{Z(x′)i​:i=t}−Z(x′)t​≤−K,即

f

(

x

)

=

m

a

x

(

m

a

x

{

Z

(

x

)

i

:

i

t

}

Z

(

x

)

t

,

K

)

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
[外链图片转存中…(img-yEg065H9-1715832632206)]
[外链图片转存中…(img-eqN3ftwS-1715832632207)]
[外链图片转存中…(img-TzNjVGlm-1715832632208)]
[外链图片转存中…(img-xq8hxy5g-1715832632208)]
[外链图片转存中…(img-dlx7QH6R-1715832632209)]
[外链图片转存中…(img-lVWGGFtB-1715832632209)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

需要体系化学习资料的朋友,可以加我V获取:vip204888 (备注网络安全)

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以点击这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值