Python垃圾回收机制剖析(2)

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

// 分代的C源码

#define NUM_GENERATIONS 3

struct gc_generation generations[NUM_GENERATIONS] = {

/* PyGC_Head, threshold, count */

{{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)}, 700, 0}, // 0代

{{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)}, 10, 0}, // 1代

{{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)}, 10, 0}, // 2代

};

复制代码

特别注意:0代和1、2代的threshold和count表示的意义不同。

0代,count表示0代链表中对象的数量,threshold表示0代链表对象个数阈值,超过则执行一次0代扫描检查。 1代,count表示0代链表扫描的次数,threshold表示0代链表扫描的次数阈值,超过则执行一次1代扫描检查。 2代,count表示1代链表扫描的次数,threshold表示1代链表扫描的次数阈值,超过则执行一2代扫描检查。

1.4 情景模拟

根据C语言底层并结合图来讲解内存管理和垃圾回收的详细过程。

第一步:当创建对象age=19时,会将对象添加到refchain链表中。

第二步:当创建对象num_list = [11,22]时,会将列表对象添加到 refchain 和 generations 0代中。

第三步:新创建对象使generations的0代链表上的对象数量大于阈值700时,要对链表上的对象进行扫描检查。

当0代大于阈值后,底层不是直接扫描0代,而是先判断2、1是否也超过了阈值。

  • 如果2、1代未达到阈值,则扫描0代,并让1代的 count + 1 。

  • 如果2代已达到阈值,则将2、1、0三个链表拼接起来进行全扫描,并将2、1、0代的count重置为0.

  • 如果1代已达到阈值,则讲1、0两个链表拼接起来进行扫描,并将所有1、0代的count重置为0.

对拼接起来的链表在进行扫描时,主要就是剔除循环引用和销毁垃圾,详细过程为:

  • 扫描链表,把每个对象的引用计数器拷贝一份并保存到 gc_refs中,保护原引用计数器。

  • 再次扫描链表中的每个对象,并检查是否存在循环引用,如果存在则让各自的gc_refs减 1 。

  • 再次扫描链表,将 gc_refs 为 0 的对象移动到unreachable链表中;不为0的对象直接升级到下一代链表中。

  • 处理unreachable链表中的对象的 析构函数 和 弱引用,不能被销毁的对象升级到下一代链表,能销毁的保留在此链表。析构函数,指的就是那些定义了__del__方法的对象,需要执行之后再进行销毁处理。

  • 最后将 unreachable 中的每个对象销毁并在refchain链表中移除(不考虑缓存机制)。

至此,垃圾回收的过程结束。

1.5 缓存机制

从上文大家可以了解到当对象的引用计数器为0时,就会被销毁并释放内存。而实际上他不是这么的简单粗暴,因为反复的创建和销毁会使程序的执行效率变低。Python中引入了“缓存机制”机制。

例如:引用计数器为0时,不会真正销毁对象,而是将他放到一个名为 free_list 的链表中,之后会再创建对象时不会在重新开辟内存,而是在free_list中将之前的对象来并重置内部的值来使用。

  • float类型,维护的free_list链表最多可缓存100个float对象。

v1 = 3.14 # 开辟内存来存储float对象,并将对象添加到refchain链表。

print( id(v1) ) # 内存地址:4436033488

del v1 # 引用计数器-1,如果为0则在rechain链表中移除,不销毁对象,而是将对象添加到float的free_list.

v2 = 9.999 # 优先去free_list中获取对象,并重置为9.999,如果free_list为空才重新开辟内存。

print( id(v2) ) # 内存地址:4436033488

注意:引用计数器为0时,会先判断free_list中缓存个数是否满了,未满则将对象缓存,已满则直接将对象销毁。

复制代码

  • int类型,不是基于free_list,而是维护一个small_ints链表保存常见数据(小数据池),小数据池范围:-5 <= value < 257。即:重复使用这个范围的整数时,不会重新开辟内存。

v1 = 38 # 去小数据池small_ints中获取38整数对象,将对象添加到refchain并让引用计数器+1。

print( id(v1)) #内存地址:4514343712

v2 = 38 # 去小数据池small_ints中获取38整数对象,将refchain中的对象的引用计数器+1。

print( id(v2) ) #内存地址:4514343712

注意:在解释器启动时候-5~256就已经被加入到small_ints链表中且引用计数器初始化为1,

代码中使用的值时直接去small_ints中拿来用并将引用计数器+1即可。另外,small_ints中的数据引用计数器永远不会为0

(初始化时就设置为1了),所以也不会被销毁。

复制代码

  • str类型,维护unicode_latin1[256]链表,内部将所有的ascii字符缓存起来,以后使用时就不再反复创建。

v1 = “A”

print( id(v1) ) # 输出:4517720496

del v1

v2 = “A”

print( id(v1) ) # 输出:4517720496

除此之外,Python内部还对字符串做了驻留机制,针对只含有字母、数字、下划线的字符串(见源码Objects/codeobject.c),如果

内存中已存在则不会重新在创建而是使用原来的地址里(不会像free_list那样一直在内存存活,只有内存中有才能被重复利用)。

v1 = “asdfg”

v2 = “asdfg”

print(id(v1) == id(v2)) # 输出:True

复制代码

  • list类型,维护的free_list数组最多可缓存80个list对象。

v1 = [11,22,33]

print( id(v1) ) # 输出:4517628816

del v1

v2 = [“你”,“好”]

print( id(v2) ) # 输出:4517628816

复制代码

  • tuple类型,维护一个free_list数组且数组容量20,数组中元素可以是链表且每个链表最多可以容纳2000个元组对象。元组的free_list数组在存储数据时,是按照元组可以容纳的个数为索引找到free_list数组中对应的链表,并添加到链表中。

v1 = (1,2)

print( id(v1) )

del v1 # 因元组的数量为2,所以会把这个对象缓存到free_list[2]的链表中。

v2 = (“哈哈哈”,“Alex”) # 不会重新开辟内存,而是去free_list[2]对应的链表中拿到一个对象来使用。

print( id(v2) )

复制代码

  • dict类型,维护的free_list数组最多可缓存80个dict对象

v1 = {“k1”:123}

print( id(v1) ) # 输出:4515998128

del v1

v2 = {“name”:“哈哈哈”,“age”:18,“gender”:“男”}

print( id(v1) ) # 输出:4515998128

复制代码

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值