CoAtNet实战:使用CoAtNet对植物幼苗进行分类(pytorch)

文章介绍了如何使用PyTorch框架处理包含12类植物幼苗的分类数据集,包括数据下载、预处理、划分训练集和测试集,以及使用coatnet模型进行训练,设置了学习率调整策略和数据加载工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

│ ├─Black-grass

│ ├─Charlock

│ ├─Cleavers

│ ├─Common Chickweed

│ ├─Common wheat

│ ├─Fat Hen

│ ├─Loose Silky-bent

│ ├─Maize

│ ├─Scentless Mayweed

│ ├─Shepherds Purse

│ ├─Small-flowered Cranesbill

│ └─Sugar beet

├─dataset

│ └─dataset.py

└─models

│ └─coatnet.py

└─train.py

└─test.py

数据集

==============================================================

数据集选用植物幼苗分类,总共12类。数据集连接如下:

链接:https://pan.baidu.com/s/1TOLSNj9JE4-MFhU0Yv8TNQ

提取码:syng

在工程的根目录新建data文件夹,获取数据集后,将trian和test解压放到data文件夹下面,如下图:

img

安装库,并导入需要的库

======================================================================

安装完成后,导入到项目中。

import torch.optim as optim

import torch

import torch.nn as nn

import torch.nn.parallel

import torch.utils.data

import torch.utils.data.distributed

import torchvision.transforms as transforms

from dataset.dataset import SeedlingData

from torch.autograd import Variable

from models.coatnet import coatnet_0

设置全局参数

=======================================

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值