2024年最新Python-Matplotlib可视化(10)——一文详解3D统计图的绘制

本文详细介绍了如何使用Matplotlib库在Python中创建3D图形,包括Lorenz吸引子的动态模拟、3D标量场的表示、不同类型的3D曲面绘制(如表面和线框),以及如何在3D空间中嵌入2D图形,如3D柱状图的实例。此外,还强调了系统化学习的重要性,提供了相关资源和社群支持。
摘要由CSDN通过智能技术生成

def lorenz_map(x, dt = 1e-2):

x_dt = np.array([a * (x[1] - x[0]), x[0] * (b - x[2]) - x[1], x[0] * x[1] - c * x[2]])

return x + dt * x_dt

points = np.zeros((8000, 3))

x = np.array([.1, .0, .0])

for i in range(points.shape[0]):

points[i], x = x, lorenz_map(x)

Plotting

fig = plt.figure()

ax = fig.gca(projection = ‘3d’)

ax.set_xlabel(‘X axis’)

ax.set_ylabel(‘Y axis’)

ax.set_zlabel(‘Z axis’)

ax.set_title(‘Lorenz Attractor a=%0.2f b=%0.2f c=%0.2f’ % (a, b, c))

ax.plot(points[:, 0], points[:, 1], points[:, 2], c = ‘c’)

plt.show()

3D曲线图

3D标量场


到目前为止,我们看到的3D绘图方式类似与相应的2D绘图方式,但也有许多特有的三维绘图功能,例如将二维标量场绘制为3D曲面:

import numpy as np

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

x = np.linspace(-3, 3, 256)

y = np.linspace(-3, 3, 256)

x_grid, y_grid = np.meshgrid(x, y)

z = np.sinc(np.sqrt(x_grid ** 2 + y_grid ** 2))

fig = plt.figure()

ax = fig.gca(projection = ‘3d’)

ax.plot_surface(x_grid, y_grid, z, cmap=cm.viridis)

plt.show()

3D标量场Tips

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值