摘要
本文针对同步发电机在突然三相短路条件下的暂态过程进行分析与仿真,建立了发电机的数学模型,利用MATLAB/Simulink进行系统仿真。仿真结果验证了暂态过程中电流的变化规律,为电力系统故障分析提供了理论支持和技术参考。
理论
同步发电机在突然三相短路情况下,定子绕组中会产生强烈的短路电流,这一过程包含了多个时间常数的动态行为。该暂态过程可以分为以下三个阶段:
1. 瞬态反应(Transient Response) 短路发生时,由于发电机的电抗和电感作用,短路电流迅速增大,呈现一个高幅值的冲击电流。
2. 次暂态反应(Sub-Transient Response) 在短路初期,次暂态电抗占主导,电流快速衰减。
3. 稳态反应(Steady-State Response) 随时间推移,电流逐渐趋于稳定值,受电机电抗和阻抗的影响。
数学模型
同步发电机的动态行为可以通过以下方程描述:
-
定子电压方程:
-
磁链方程:
-
转子方程:
短路故障可通过建立等值电路模型,使用上述方程对暂态行为进行仿真分析。
实验结果
通过Simulink搭建同步发电机突然三相短路仿真模型(如图所示),获得以下结果:
1. 定子电流暂态波形
仿真结果显示,短路发生后电流迅速升高,随后在次暂态时间常数的作用下快速衰减,最终趋于稳定。
2. 转子磁链变化
转子磁链呈现明显的波动,随后趋于平稳,表明短路对转子磁链的暂态影响显著。
3. 电磁转矩变化
短路初期,电磁转矩出现剧烈波动,随后随着电流的衰减逐渐恢复至稳定状态。
部分代码
% 定义同步发电机参数
Rs = 0.01; % 定子电阻 (pu)
Xd = 1.8; % 同步电抗 (pu)
Xq = 1.7; % 阻抗 (pu)
Xdp = 0.3; % 暂态电抗 (pu)
X''d = 0.2; % 次暂态电抗 (pu)
Tdp = 0.03; % 暂态时间常数 (s)
T''d = 0.01; % 次暂态时间常数 (s)
% 短路仿真时间
t = linspace(0, 0.5, 1000); % 时间序列
fault_time = 0.1; % 短路发生时间 (s)
% 初始条件
I_d = zeros(1, length(t));
I_q = zeros(1, length(t));
% 短路电流计算
for k = 2:length(t)
dt = t(k) - t(k-1);
if t(k) < fault_time
% 正常运行
I_d(k) = I_d(k-1) * exp(-dt / Tdp);
I_q(k) = I_q(k-1) * exp(-dt / Tdp);
else
% 短路发生
I_d(k) = I_d(k-1) * exp(-dt / T''d);
I_q(k) = I_q(k-1) * exp(-dt / T''d);
end
end
% 绘制暂态电流波形
plot(t, sqrt(I_d.^2 + I_q.^2));
xlabel('时间 (s)');
ylabel('短路电流 (pu)');
title('同步发电机短路暂态电流');
grid on;
参考文献
❝
Kundur, P. (1994). Power System Stability and Control. McGraw-Hill.
Anderson, P. M., & Fouad, A. A. (2002). Power System Control and Stability. Wiley.
Krause, P. C., Wasynczuk, O., & Sudhoff, S. D. (2002). Analysis of Electric Machinery and Drive Systems. Wiley.
MATLAB Documentation: Simulink Models for Synchronous Machine.
(文章内容仅供参考,具体效果以图片为准)