在洛伦兹变换中,时间和空间的变换被统一考虑,包括时间的相对流逝和空间的相对压缩。
背景
洛伦兹变换是由亨德里克·洛伦兹(Hendrik Lorentz)在1904年推导出来的,用于描述相对论中物体在不同参考系之间的运动变换关系。
公式
x
′
=
x
−
v
t
1
−
v
2
c
2
x'=\dfrac{x-vt}{\sqrt{1-\dfrac{v^2}{c^2}}}
x′=1−c2v2x−vt
y
′
=
y
y'=y
y′=y
z
′
=
z
z'=z
z′=z
t
′
=
t
−
v
x
c
2
1
−
v
2
c
2
t'=\dfrac{t-\dfrac{vx}{c^2}}{\sqrt{1-\dfrac{v^2}{c^2}}}
t′=1−c2v2t−c2vx
意义
洛伦兹变换是狭义相对论中描述事件在不同惯性参考系中的变换关系。它包括时间和空间的变换。
在洛伦兹变换中,有两个主要的参考系:原始的惯性参考系(也称为静止参考系)和相对于原始参考系运动的参考系(也称为运动参考系)。洛伦兹变换描述了事件在这两个参考系之间的变换关系。
洛伦兹变换包含了时间的变换和空间的变换。
对于时间的变换,洛伦兹变换中的时间间隔是绝对不变的,即不论在哪个惯性参考系中测量时间,两个事件之间的时间间隔是不变的。然而,两个不同参考系中对同一事件的观测时间可能会有不同。这是由于狭义相对论中的时间膨胀效应,即运动参考系中的时间会比静止参考系中的时间慢。
对于空间的变换,洛伦兹变换中的空间坐标也会发生变换。具体而言,运动参考系中的空间坐标会发生长度收缩效应,即与静止参考系相比,运动参考系中的物体在空间上看起来更短。
洛伦兹变换的作用是描述在不同惯性参考系中,事件的时间和空间坐标的变换关系。它对于理解相对论中时间膨胀和长度收缩效应等重要现象具有重要作用。