ComfyUI 快速入门:从安装到使用的全面指南!

前言

在现代 AI 应用中,图像生成已成为一个热门话题。ComfyUI 是一个功能强大的工具,可以帮助用户轻松生成高质量的图像。本文将详细介绍如何在 Mac M系列(我的电脑是M2的) 和 Windows 上安装和使用 ComfyUI,从准备环境到生成图像的每一步都详细解析。

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~在这里插入图片描述

安装步骤

1. 安装 Homebrew 和 Git

Mac:

如果还没有安装 Homebrew,请打开终端,输入以下命令并按回车键安装:

/bin/bash -c “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)”

安装完成后,继续安装 Git:

brew install git

Windows:

前往 Git 官方网站 (https://git-scm.com/),下载并安装 Git。

2. 安装 Python

Mac:

在终端中输入以下命令并按回车键安装 Python:

brew install python

Windows:

前往 Python 官方网站 (https://www.python.org/),下载并安装 Python。确保在安装过程中选中 “Add Python to PATH” 选项。

3. 检查 Python 安装

确认 Python 已正确安装并查看版本:

Mac:在终端中输入 python3 –version

Windows:在命令提示符中输入 python –version

4. 克隆 ComfyUI 仓库

在终端(Mac M2)或命令提示符(Windows)中运行以下命令:

git clone https://github.com/comfyanonymous/ComfyUI

cd ComfyUI

5. 创建虚拟环境(推荐)

在 ComfyUI 目录中,创建一个虚拟环境以管理依赖:

Mac :python3 -m venv venv

Windows:python -m venv venv

激活虚拟环境:

Mac:source venv/bin/activate

Windows:venv\Scripts\activate

6. 安装依赖

在终端(Mac M2)或命令提示符(Windows)中运行:

pip install -r requirements.txt

7. 运行 ComfyUI

安装完成后,使用以下命令启动 ComfyUI:

python main.py –force-fp16

使用步骤

1. 加载模型

将 Stable Diffusion 的模型检查点文件(.ckpt 或 .safetensors 文件)放入 ComfyUI/models/checkpoints 目录中。如果没有模型文件,可以从 Hugging Face 或 CivitAI 下载。

2. 启动 ComfyUI

在终端(Mac M2)或命令提示符(Windows)中运行以下命令以启动 ComfyUI:

python main.py –force-fp16

打开浏览器并访问 http://127.0.0.1:8188。

3. 创建工作流程

打开 ComfyUI 后,通过右键点击空白区域并选择“Add Node”来添加节点,或者双击空白区域并输入节点名称来添加节点。

4. 设置图像生成工作流程

一个基本的图像生成工作流程通常包括以下节点:

Text Encoder:用于输入和编码文本提示。

Diffusion Model:核心的图像生成模型节点。

VAE Encode 和 VAE Decode:用于处理图像数据的变分自动编码器节点。

Preview Image:用于预览生成的图像。

连接这些节点以形成一个完整的工作流程。例如,将 Text Encoder 的输出连接到 Diffusion Model 的输入,然后将 Diffusion Model 的输出连接到 VAE Decode,最后将 VAE Decode 的输出连接到 Preview Image。

5. 输入文本提示

在 Text Encoder 节点中,输入你想要生成图像的文本提示。

6. 生成图像

设置好工作流程后,点击“Queue Prompt”按钮,或者按 Cmd+Enter(Mac) 或 Ctrl+Enter(Windows) 开始生成图像。

ComfyUI Manager 安装(可选)

1. 进入 custom_nodes 文件夹

cd path/ComfyUI

cd custom_nodes

2. 克隆 ComfyUI Manager

git clone https://github.com/ltdrdata/ComfyUI-Manager.git

3. 重启 ComfyUI 并回到根目录

cd path/ComfyUI

python main.py

示例工作流程

以下是一个简单的示例工作流程图:

  1. Text Encoder - 输入文本提示。

  2. Diffusion Model - 图像生成模型。

  3. VAE Decode - 解码生成的图像。

  4. Preview Image - 预览图像。

资源

• ComfyUI GitHub: https://github.com/comfyanonymous/ComfyUI

• ComfyUI 手册: https://www.comfyuidoc.com

• ComfyUI 介绍: https://easywithai.com/stable-diffusion-ui/comfyui/

再次使用 ComfyUI

再次使用 ComfyUI 时,只需激活虚拟环境并运行以下命令启动 ComfyUI:

Mac M2:

cd ComfyUI

source venv/bin/activate

python main.py –force-fp16

Windows:

cd ComfyUI

venv\Scripts\activate

python main.py –force-fp16

最后看一下在中国海边玩水的爱莎:‍‍‍

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值