前言
在现代 AI 应用中,图像生成已成为一个热门话题。ComfyUI 是一个功能强大的工具,可以帮助用户轻松生成高质量的图像。本文将详细介绍如何在 Mac M系列(我的电脑是M2的) 和 Windows 上安装和使用 ComfyUI,从准备环境到生成图像的每一步都详细解析。
所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~
安装步骤
1. 安装 Homebrew 和 Git
Mac:
如果还没有安装 Homebrew,请打开终端,输入以下命令并按回车键安装:
/bin/bash -c “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)”
安装完成后,继续安装 Git:
brew install git
Windows:
前往 Git 官方网站 (https://git-scm.com/),下载并安装 Git。
2. 安装 Python
Mac:
在终端中输入以下命令并按回车键安装 Python:
brew install python
Windows:
前往 Python 官方网站 (https://www.python.org/),下载并安装 Python。确保在安装过程中选中 “Add Python to PATH” 选项。
3. 检查 Python 安装
确认 Python 已正确安装并查看版本:
Mac:在终端中输入 python3 –version
Windows:在命令提示符中输入 python –version
4. 克隆 ComfyUI 仓库
在终端(Mac M2)或命令提示符(Windows)中运行以下命令:
git clone https://github.com/comfyanonymous/ComfyUI
cd ComfyUI
5. 创建虚拟环境(推荐)
在 ComfyUI 目录中,创建一个虚拟环境以管理依赖:
Mac :python3 -m venv venv
Windows:python -m venv venv
激活虚拟环境:
Mac:source venv/bin/activate
Windows:venv\Scripts\activate
6. 安装依赖
在终端(Mac M2)或命令提示符(Windows)中运行:
pip install -r requirements.txt
7. 运行 ComfyUI
安装完成后,使用以下命令启动 ComfyUI:
python main.py –force-fp16
使用步骤
1. 加载模型
将 Stable Diffusion 的模型检查点文件(.ckpt 或 .safetensors 文件)放入 ComfyUI/models/checkpoints 目录中。如果没有模型文件,可以从 Hugging Face 或 CivitAI 下载。
2. 启动 ComfyUI
在终端(Mac M2)或命令提示符(Windows)中运行以下命令以启动 ComfyUI:
python main.py –force-fp16
打开浏览器并访问 http://127.0.0.1:8188。
3. 创建工作流程
打开 ComfyUI 后,通过右键点击空白区域并选择“Add Node”来添加节点,或者双击空白区域并输入节点名称来添加节点。
4. 设置图像生成工作流程
一个基本的图像生成工作流程通常包括以下节点:
Text Encoder:用于输入和编码文本提示。
Diffusion Model:核心的图像生成模型节点。
VAE Encode 和 VAE Decode:用于处理图像数据的变分自动编码器节点。
Preview Image:用于预览生成的图像。
连接这些节点以形成一个完整的工作流程。例如,将 Text Encoder 的输出连接到 Diffusion Model 的输入,然后将 Diffusion Model 的输出连接到 VAE Decode,最后将 VAE Decode 的输出连接到 Preview Image。
5. 输入文本提示
在 Text Encoder 节点中,输入你想要生成图像的文本提示。
6. 生成图像
设置好工作流程后,点击“Queue Prompt”按钮,或者按 Cmd+Enter(Mac) 或 Ctrl+Enter(Windows) 开始生成图像。
ComfyUI Manager 安装(可选)
1. 进入 custom_nodes 文件夹
cd path/ComfyUI
cd custom_nodes
2. 克隆 ComfyUI Manager
git clone https://github.com/ltdrdata/ComfyUI-Manager.git
3. 重启 ComfyUI 并回到根目录
cd path/ComfyUI
python main.py
示例工作流程
以下是一个简单的示例工作流程图:
-
Text Encoder - 输入文本提示。
-
Diffusion Model - 图像生成模型。
-
VAE Decode - 解码生成的图像。
-
Preview Image - 预览图像。
资源
• ComfyUI GitHub: https://github.com/comfyanonymous/ComfyUI
• ComfyUI 手册: https://www.comfyuidoc.com
• ComfyUI 介绍: https://easywithai.com/stable-diffusion-ui/comfyui/
再次使用 ComfyUI
再次使用 ComfyUI 时,只需激活虚拟环境并运行以下命令启动 ComfyUI:
Mac M2:
cd ComfyUI
source venv/bin/activate
python main.py –force-fp16
Windows:
cd ComfyUI
venv\Scripts\activate
python main.py –force-fp16
最后看一下在中国海边玩水的爱莎:
为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
一、ComfyUI配置指南
- 报错指南
- 环境配置
- 脚本更新
- 后记
- …
二、ComfyUI基础入门
- 软件安装篇
- 插件安装篇
- …
三、 ComfyUI工作流节点/底层逻辑详解
- ComfyUI 基础概念理解
- Stable diffusion 工作原理
- 工作流底层逻辑
- 必备插件补全
- …
四、ComfyUI节点技巧进阶/多模型串联
- 节点进阶详解
- 提词技巧精通
- 多模型节点串联
- …
五、ComfyUI遮罩修改重绘/Inpenting模块详解
- 图像分辨率
- 姿势
- …
六、ComfyUI超实用SDXL工作流手把手搭建
- Refined模型
- SDXL风格化提示词
- SDXL工作流搭建
- …
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取