【YOLOv5/v7改进系列】替换Neck为Gold-Yolo特征融合网络

一、导言

Gold-YOLO是一种高效的物体检测模型,它通过一种新的机制——Gather-and-Distribute(GD)机制来增强多尺度特征融合的能力,从而在保证实时性能的同时提高了检测精度。下面是对Gold-YOLO的主要特点和创新点的概述:

关键特点
  1. Gather-and-Distribute (GD) 机制:这是Gold-YOLO的核心贡献之一。GD机制通过卷积和自注意力操作来实现对多尺度特征的有效融合,从而提升模型在不同大小物体检测上的性能。
  2. 平衡速度与精度:Gold-YOLO在保证实时性能的同时,也达到了较高的检测精度,特别是在不同模型规模下的平衡。
  3. 预训练方法:Gold-YOLO首次在YOLO系列中实现了MAE-style预训练方法,允许模型从无监督学习中受益,进一步提高了模型的性能。
创新点
  1. GD机制的设计:GD机制由三个主要模块组成:特征对齐模块(FAM)、信息融合模块(IFM)和信息注入模块(Inject)。FAM负责收集和对齐来自不同层级的特征,IFM则融合这些对齐后的特征以生成全局信息。最后,通过简单的注意力操作,Inject模块将这些全局信息分配到各个层级,进而增强各个分支的检测能力。

    • 低级Gather-and-Distribute分支(Low-GD):专门针对小目标和中等目标,通过融合高层级的特征来保留高分辨率信息。
    • 高级Gather-and-Distribute分支(High-GD):主要关注大目标的检测,通过融合低层级的特征来获得更大的感受野。
    • 轻量级相邻层融合模块(LAF):增强两个分支之间的信息交流,进一步提升模型性能。
  2. 高效的信息融合:通过上述的GD机制,Gold-YOLO能够有效解决传统FPN和PANet中存在的信息融合问题,实现了更好的多尺度特征融合,从而在检测不同大小的目标时表现出色。

  3. MAE-style预训练:Gold-YOLO在主干网络上采用了掩码自编码(MAE)式的预训练方法,这有助于模型在有监督训练前就具备良好的特征表示能力,进而加速收敛并提高最终性能。

性能评估

Gold-YOLO在多个方面都展示了出色的性能,包括但不限于:

  • 速度与精度的平衡:Gold-YOLO的不同版本(如Gold-YOLO-N、Gold-YOLO-S、Gold-YOLO-M等)均能在保持或超越竞争对手的速度的同时,提供更高的平均精度(AP)。
  • 跨模型规模的一致性:无论是在小型、中型还是大型模型版本中,Gold-YOLO都能够保持一致的高性能,证明了其机制的有效性和通用性。
  • 跨任务扩展性:除了物体检测任务外,GD机制还被应用于实例分割和语义分割任务中,同样取得了显著的性能提升。
实验结果
  • 物体检测:在COCO数据集上,Gold-YOLO的不同版本均优于或与同类模型相当,例如YOLov6-3.0、YOLOX和PPYOLOE等,在速度和精度上都有所提升。
  • 实例分割:在Mask R-CNN上应用GD机制后,在COCO实例分割数据集上也获得了显著的性能提升。
  • 语义分割:在PointRend模型上替换为GD机制后,在Cityscapes数据集上的语义分割任务中同样显示出了更好的性能。

综上所述,Gold-YOLO通过其创新的GD机制和其他优化措施,在保持高效运行的同时显著提高了物体检测的准确性,并且证明了其机制的广泛适用性。

二、准备工作

首先在YOLOv5/v7的models文件夹下新建文件goldyolo.py,导入如下代码

from models.common import *

import torch.nn.functional as F


# https://arxiv.org/pdf/2309.11331v4

def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1, bias=False):
    '''Basic cell for rep-style block, including conv and bn'''
    result = nn.Sequential()
    result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                        kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
                                        bias=bias))
    result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
    return result


class RepVGGBlock(nn.Module):
    '''RepVGGBlock is a basic rep-style block, including training and deploy status
    This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
    '''

    def __init__(self, in_channels, out_channels, kernel_size=3,
                 stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
        super(RepVGGBlock, self).__init__()
        """ Initialization of the class.
        Args:
            in_channels (int): Number of channels in the input image
            out_channels (int): Number of channels produced by the convolution
            kernel_size (int or tuple): Size of the convolving kernel
            stride (int or tuple, optional): Stride of the convolution. Default: 1
            padding (int or tuple, optional): Zero-padding added to both sides of
                the input. Default: 1
            dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
            groups (int, optional): Number of blocked connections from input
                channels to output channels. Default: 1
            padding_mode (string, optional): Default: 'zeros'
            deploy: Whether to be deploy status or training status. Default: False
            use_se: Whether to use se. Default: False
        """
        self.deploy = deploy
        self.groups = groups
        self.in_channels = in_channels
        self.out_channels = out_channels

        assert kernel_size == 3
        assert padding == 1

        padding_11 = padding - kernel_size // 2

        self.nonlinearity = nn.ReLU()

        if use_se:
            raise NotImplementedError("se block not supported yet")
        else:
            self.se = nn.Identity()

        if deploy:
            self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                         stride=stride,
                                         padding=padding, dilation=dilation, groups=groups, bias=True,
                                         padding_mode=padding_mode)

        else:
            self.rbr_identity = nn.BatchNorm2d(
                num_features=in_channels) if out_channels == in_channels and stride == 1 else None
            self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                     stride=stride, padding=padding, groups=groups)
            self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
                                   padding=padding_11, groups=groups)

    def forward(self, inputs):
        '''Forward process'''
        if hasattr(self, 'rbr_reparam'):
            return self.nonlinearity(self.se(self.rbr_reparam(inputs)))

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)

        return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def switch_to_deploy(self):
        if hasattr(self, 'rbr_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels,
                                     out_channels=self.rbr_dense.conv.out_channels,
                                     kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
                                     padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation,
                                     groups=self.rbr_dense.conv.groups, bias=True)
        self.rbr_reparam.weight.data = kernel
        self.rbr_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('rbr_dense')
        self.__delattr__('rbr_1x1')
        if hasattr(self, 'rbr_identity'):
            self.__delattr__('rbr_identity')
        if hasattr(self, 'id_tensor'):
            self.__delattr__('id_tensor')
        self.deploy = True


def onnx_AdaptiveAvgPool2d(x, output_size):
    stride_size = np.floor(np.array(x.shape[-2:]) / output_size).astype(np.int32)
    kernel_size = np.array(x.shape[-2:]) - (output_size - 1) * stride_size
    avg = nn.AvgPool2d(kernel_size=list(kernel_size), stride=list(stride_size))
    x = avg(x)
    return x


def get_avg_pool():
    if torch.onnx.is_in_onnx_export():
        avg_pool = onnx_AdaptiveAvgPool2d
    else:
        avg_pool = nn.functional.adaptive_avg_pool2d
    return avg_pool


class SimFusion_3in(nn.Module):
    def __init__(self, in_channel_list, out_channels):
        super().__init__()
        self.cv1 = Conv(in_channel_list[0], out_channels, act=nn.ReLU()) if in_channel_list[
                                                                                0] != out_channels else nn.Identity()
        self.cv2 = Conv(in_channel_list[1], out_channels, act=nn.ReLU()) if in_channel_list[
                                                                                1] != out_channels else nn.Identity()
        self.cv3 = Conv(in_channel_list[2], out_channels, act=nn.ReLU()) if in_channel_list[
                                                                                2] != out_channels else nn.Identity()
        self.cv_fuse = Conv(out_channels * 3, out_channels, act=nn.ReLU())
        self.downsample = nn.functional.adaptive_avg_pool2d

    def forward(self, x):
        N, C, H, W = x[1].shape
        output_size = (H, W)

        if torch.onnx.is_in_onnx_export():
            self.downsample = onnx_AdaptiveAvgPool2d
            output_size = np.array([H, W])

        x0 = self.cv1(self.downsample(x[0], output_size))
        x1 = self.cv2(x[1])
        x2 = self.cv3(F.interpolate(x[2], size=(H, W), mode='bilinear', align_corners=False))
        return self.cv_fuse(torch.cat((x0, x1, x2), dim=1))


class SimFusion_4in(nn.Module):
    def __init__(self):
        super().__init__()
        self.avg_pool = nn.functional.adaptive_avg_pool2d

    def forward(self, x):
        x_l, x_m, x_s, x_n = x
        B, C, H, W = x_s.shape
        output_size = np.array([H, W])

        if torch.onnx.is_in_onnx_export():
            self.avg_pool = onnx_AdaptiveAvgPool2d

        x_l = self.avg_pool(x_l, output_size)
        x_m = self.avg_pool(x_m, output_size)
        x_n = F.interpolate(x_n, size=(H, W), mode='bilinear', align_corners=False)

        out = torch.cat([x_l, x_m, x_s, x_n], 1)
        return out


class IFM(nn.Module):
    def __init__(self, inc, ouc, embed_dim_p=96, fuse_block_num=3) -> None:
        super().__init__()

        self.conv = nn.Sequential(
            Conv(inc, embed_dim_p),
            *[RepVGGBlock(embed_dim_p, embed_dim_p) for _ in range(fuse_block_num)],
            Conv(embed_dim_p, sum(ouc))
        )

    def forward(self, x):
        return self.conv(x)


class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6


class InjectionMultiSum_Auto_pool(nn.Module):
    def __init__(
            self,
            inp: int,
            oup: int,
            global_inp: list,
            flag: int
    ) -> None:
        super().__init__()
        self.global_inp = global_inp
        self.flag = flag
        self.local_embedding = Conv(inp, oup, 1, act=False)
        self.global_embedding = Conv(global_inp[self.flag], oup, 1, act=False)
        self.global_act = Conv(global_inp[self.flag], oup, 1, act=False)
        self.act = h_sigmoid()

    def forward(self, x):
        '''
        x_g: global features
        x_l: local features
        '''
        x_l, x_g = x
        B, C, H, W = x_l.shape
        g_B, g_C, g_H, g_W = x_g.shape
        use_pool = H < g_H

        gloabl_info = x_g.split(self.global_inp, dim=1)[self.flag]

        local_feat = self.local_embedding(x_l)

        global_act = self.global_act(gloabl_info)
        global_feat = self.global_embedding(gloabl_info)

        if use_pool:
            avg_pool = get_avg_pool()
            output_size = np.array([H, W])

            sig_act = avg_pool(global_act, output_size)
            global_feat = avg_pool(global_feat, output_size)

        else:
            sig_act = F.interpolate(self.act(global_act), size=(H, W), mode='bilinear', align_corners=False)
            global_feat = F.interpolate(global_feat, size=(H, W), mode='bilinear', align_corners=False)

        out = local_feat * sig_act + global_feat
        return out


def get_shape(tensor):
    shape = tensor.shape
    if torch.onnx.is_in_onnx_export():
        shape = [i.cpu().numpy() for i in shape]
    return shape


class PyramidPoolAgg(nn.Module):
    def __init__(self, inc, ouc, stride, pool_mode='torch'):
        super().__init__()
        self.stride = stride
        if pool_mode == 'torch':
            self.pool = nn.functional.adaptive_avg_pool2d
        elif pool_mode == 'onnx':
            self.pool = onnx_AdaptiveAvgPool2d
        self.conv = Conv(inc, ouc)

    def forward(self, inputs):
        B, C, H, W = get_shape(inputs[-1])
        H = (H - 1) // self.stride + 1
        W = (W - 1) // self.stride + 1

        output_size = np.array([H, W])

        if not hasattr(self, 'pool'):
            self.pool = nn.functional.adaptive_avg_pool2d

        if torch.onnx.is_in_onnx_export():
            self.pool = onnx_AdaptiveAvgPool2d

        out = [self.pool(inp, output_size) for inp in inputs]

        return self.conv(torch.cat(out, dim=1))


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = Conv(in_features, hidden_features, act=False)
        self.dwconv = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, bias=True, groups=hidden_features)
        self.act = nn.ReLU6()
        self.fc2 = Conv(hidden_features, out_features, act=False)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Attention(torch.nn.Module):
    def __init__(self, dim, key_dim, num_heads, attn_ratio=4):
        super().__init__()
        self.num_heads = num_heads
        self.scale = key_dim ** -0.5
        self.key_dim = key_dim
        self.nh_kd = nh_kd = key_dim * num_heads  # num_head key_dim
        self.d = int(attn_ratio * key_dim)
        self.dh = int(attn_ratio * key_dim) * num_heads
        self.attn_ratio = attn_ratio

        self.to_q = Conv(dim, nh_kd, 1, act=False)
        self.to_k = Conv(dim, nh_kd, 1, act=False)
        self.to_v = Conv(dim, self.dh, 1, act=False)

        self.proj = torch.nn.Sequential(nn.ReLU6(), Conv(self.dh, dim, act=False))

    def forward(self, x):  # x (B,N,C)
        B, C, H, W = get_shape(x)

        qq = self.to_q(x).reshape(B, self.num_heads, self.key_dim, H * W).permute(0, 1, 3, 2)
        kk = self.to_k(x).reshape(B, self.num_heads, self.key_dim, H * W)
        vv = self.to_v(x).reshape(B, self.num_heads, self.d, H * W).permute(0, 1, 3, 2)

        attn = torch.matmul(qq, kk)
        attn = attn.softmax(dim=-1)  # dim = k

        xx = torch.matmul(attn, vv)

        xx = xx.permute(0, 1, 3, 2).reshape(B, self.dh, H, W)
        xx = self.proj(xx)
        return xx


class top_Block(nn.Module):

    def __init__(self, dim, key_dim, num_heads, mlp_ratio=4., attn_ratio=2., drop=0.,
                 drop_path=0.):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.mlp_ratio = mlp_ratio

        self.attn = Attention(dim, key_dim=key_dim, num_heads=num_heads, attn_ratio=attn_ratio)

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop)

    def forward(self, x1):
        x1 = x1 + self.drop_path(self.attn(x1))
        x1 = x1 + self.drop_path(self.mlp(x1))
        return x1


class TopBasicLayer(nn.Module):
    def __init__(self, embedding_dim, ouc_list, block_num=2, key_dim=8, num_heads=4,
                 mlp_ratio=4., attn_ratio=2., drop=0., attn_drop=0., drop_path=0.):
        super().__init__()
        self.block_num = block_num

        self.transformer_blocks = nn.ModuleList()
        for i in range(self.block_num):
            self.transformer_blocks.append(top_Block(
                embedding_dim, key_dim=key_dim, num_heads=num_heads,
                mlp_ratio=mlp_ratio, attn_ratio=attn_ratio,
                drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path))
        self.conv = nn.Conv2d(embedding_dim, sum(ouc_list), 1)

    def forward(self, x):
        # token * N
        for i in range(self.block_num):
            x = self.transformer_blocks[i](x)
        return self.conv(x)


class AdvPoolFusion(nn.Module):
    def forward(self, x):
        x1, x2 = x
        if torch.onnx.is_in_onnx_export():
            self.pool = onnx_AdaptiveAvgPool2d
        else:
            self.pool = nn.functional.adaptive_avg_pool2d

        N, C, H, W = x2.shape
        output_size = np.array([H, W])
        x1 = self.pool(x1, output_size)

        return torch.cat([x1, x2], 1)

其次在在YOLOv5/v7项目文件下的models/yolo.py中在文件首部添加代码

from models.goldyolo import *

并搜索def parse_model(d, ch)

定位到如下行添加以下代码

        elif m is SimFusion_4in: # goldyolo
            c2 = sum(ch[x] for x in f)
        elif m is SimFusion_3in:
            c2 = args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)
            args = [[ch[f_] for f_ in f], c2]
        elif m is IFM:
            c1 = ch[f]
            c2 = sum(args[0])
            args = [c1, *args]
        elif m is InjectionMultiSum_Auto_pool:
            c1 = ch[f[0]]
            c2 = args[0]
            args = [c1, *args]
        elif m is PyramidPoolAgg:
            c2 = args[0]
            args = [sum([ch[f_] for f_ in f]), *args]
        elif m is AdvPoolFusion:
            c2 = sum(ch[x] for x in f)
        elif m is TopBasicLayer:
            c2 = sum(args[1]) # goldyolo

三、YOLOv7-tiny改进工作

完成二后,在YOLOv7项目文件下的models文件夹下创建新的文件yolov7-tiny-goldyolo.yaml,导入如下代码。

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2

   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4

   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7

   [-1, 1, MP, []],  # 8-P3/8
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14

   [-1, 1, MP, []],  # 15-P4/16
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21

   [-1, 1, MP, []],  # 22-P5/32
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28
  ]

# yolov7-tiny head
head:
  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, SP, [5]],
   [-2, 1, SP, [9]],
   [-3, 1, SP, [13]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -7], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37

   [[7, 14, 21, 37], 1, SimFusion_4in, []], # 38
   [-1, 1, IFM, [[64, 32]]], # 39

   [37, 1, Conv, [256, 1, 1]], # 40
   [[14, 21, -1], 1, SimFusion_3in, [256]], # 41
   [[-1, 39], 1, InjectionMultiSum_Auto_pool, [256, [64, 32], 0]], # 42

   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 48

   [21, 1, Conv, [128, 1, 1]], # 49
   [[7, 21, -1], 1, SimFusion_3in, [128]], # 50
   [[-1, 39], 1, InjectionMultiSum_Auto_pool, [128, [64, 32], 1]], # 51

   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57

   [[57, 48, 37], 1, PyramidPoolAgg, [352, 2]], # 58
   [-1, 1, TopBasicLayer, [352, [64, 128]]], # 59

   [[57, 49], 1, AdvPoolFusion, []], # 60
   [[-1, 59], 1, InjectionMultiSum_Auto_pool, [128, [64, 128], 0]], # 61

   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 67

   [[-1, 40], 1, AdvPoolFusion, []], # 68
   [[-1, 59], 1, InjectionMultiSum_Auto_pool, [256, [64, 128], 1]], # 69

   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 75

   [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [67, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [75, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

   [[76,77,78], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

                 from  n    params  module                                  arguments                     
  0                -1  1       928  models.common.Conv                      [3, 32, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]
  2                -1  1      2112  models.common.Conv                      [64, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  3                -2  1      2112  models.common.Conv                      [64, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  4                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  5                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  6  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
  7                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  8                -1  1         0  models.common.MP                        []                            
  9                -1  1      4224  models.common.Conv                      [64, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 10                -2  1      4224  models.common.Conv                      [64, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 11                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 12                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 13  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 15                -1  1         0  models.common.MP                        []                            
 16                -1  1     16640  models.common.Conv                      [128, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 17                -2  1     16640  models.common.Conv                      [128, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 19                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 20  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 21                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 22                -1  1         0  models.common.MP                        []                            
 23                -1  1     66048  models.common.Conv                      [256, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 24                -2  1     66048  models.common.Conv                      [256, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 25                -1  1    590336  models.common.Conv                      [256, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 26                -1  1    590336  models.common.Conv                      [256, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 27  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 28                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 29                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 30                -2  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 31                -1  1         0  models.common.SP                        [5]                           
 32                -2  1         0  models.common.SP                        [9]                           
 33                -3  1         0  models.common.SP                        [13]                          
 34  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 35                -1  1    262656  models.common.Conv                      [1024, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 36          [-1, -7]  1         0  models.common.Concat                    [1]                           
 37                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 38   [7, 14, 21, 37]  1         0  models.goldyolo.SimFusion_4in           []                            
 39                -1  1    355392  models.goldyolo.IFM                     [704, [64, 32]]               
 40                37  1     66048  models.common.Conv                      [256, 256, 1, 1]              
 41      [14, 21, -1]  1    230400  models.goldyolo.SimFusion_3in           [[128, 256, 256], 256]        
 42          [-1, 39]  1     99840  models.goldyolo.InjectionMultiSum_Auto_pool[256, 256, [64, 32], 0]       
 43                -1  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 44                -2  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 45                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 46                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 47  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 48                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 49                21  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 50       [7, 21, -1]  1     90880  models.goldyolo.SimFusion_3in           [[64, 256, 128], 128]         
 51          [-1, 39]  1     25344  models.goldyolo.InjectionMultiSum_Auto_pool[128, 128, [64, 32], 1]       
 52                -1  1      4160  models.common.Conv                      [128, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 53                -2  1      4160  models.common.Conv                      [128, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 54                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 55                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 56  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 57                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 58      [57, 48, 37]  1    158400  models.goldyolo.PyramidPoolAgg          [448, 352, 2]                 
 59                -1  1   2222528  models.goldyolo.TopBasicLayer           [352, [64, 128]]              
 60          [57, 49]  1         0  models.goldyolo.AdvPoolFusion           []                            
 61          [-1, 59]  1     41728  models.goldyolo.InjectionMultiSum_Auto_pool[192, 128, [64, 128], 0]      
 62                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 63                -2  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 64                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 65                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 66  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 67                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 68          [-1, 40]  1         0  models.goldyolo.AdvPoolFusion           []                            
 69          [-1, 59]  1    165376  models.goldyolo.InjectionMultiSum_Auto_pool[384, 256, [64, 128], 1]      
 70                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 71                -2  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 72                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 73                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 74  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 75                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 76                57  1     73984  models.common.Conv                      [64, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 77                67  1    295424  models.common.Conv                      [128, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 78                75  1   1180672  models.common.Conv                      [256, 512, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 79      [76, 77, 78]  1     17132  models.yolo.IDetect                     [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]

Model Summary: 443 layers, 8969932 parameters, 8969932 gradients, 16.1 GFLOPS

运行后若打印出如上文本代表改进成功。

四、YOLOv5s改进工作

完成二后,在YOLOv5项目文件下的models文件夹下创建新的文件yolov5s-goldyolo.yaml,导入如下代码。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[[2, 4, 6, 9], 1, SimFusion_4in, []], # 10
   [-1, 1, IFM, [[64, 32]]], # 11

   [9, 1, Conv, [512, 1, 1]], # 12
   [[4, 6, -1], 1, SimFusion_3in, [512]], # 13
   [[-1, 11], 1, InjectionMultiSum_Auto_pool, [512, [64, 32], 0]], # 14
   [-1, 3, C3, [512, False]], # 15

   [6, 1, Conv, [256, 1, 1]], # 16
   [[2, 4, -1], 1, SimFusion_3in, [256]], # 17
   [[-1, 11], 1, InjectionMultiSum_Auto_pool, [256, [64, 32], 1]], # 18
   [-1, 3, C3, [256, False]], # 19

   [[19, 15, 9], 1, PyramidPoolAgg, [352, 2]], # 20
   [-1, 1, TopBasicLayer, [352, [64, 128]]], # 21

   [[19, 16], 1, AdvPoolFusion, []], # 22
   [[-1, 21], 1, InjectionMultiSum_Auto_pool, [256, [64, 128], 0]], # 23
   [-1, 3, C3, [256, False]], # 24

   [[-1, 12], 1, AdvPoolFusion, []], # 25
   [[-1, 21], 1, InjectionMultiSum_Auto_pool, [512, [64, 128], 1]], # 26
   [-1, 3, C3, [512, False]], # 27

   [[19, 24, 27], 1, Detect, [nc, anchors]] # 28
  ]

                 from  n    params  module                                  arguments                     
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 
 10      [2, 4, 6, 9]  1         0  models.common.SimFusion_4in             []                            
 11                -1  1    379968  models.common.IFM                       [960, [64, 32]]               
 12                 9  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 13        [4, 6, -1]  1    230400  models.common.SimFusion_3in             [[128, 256, 256], 256]        
 14          [-1, 11]  1    199680  models.common.InjectionMultiSum_Auto_pool[256, 512, [64, 32], 0]       
 15                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 16                 6  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 17        [2, 4, -1]  1     57856  models.common.SimFusion_3in             [[64, 128, 128], 128]         
 18          [-1, 11]  1     50688  models.common.InjectionMultiSum_Auto_pool[128, 256, [64, 32], 1]       
 19                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 20       [19, 15, 9]  1    316096  models.common.PyramidPoolAgg            [896, 352, 2]                 
 21                -1  1   2222528  models.common.TopBasicLayer             [352, [64, 128]]              
 22          [19, 16]  1         0  models.common.AdvPoolFusion             []                            
 23          [-1, 21]  1     99840  models.common.InjectionMultiSum_Auto_pool[256, 256, [64, 128], 0]      
 24                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 25          [-1, 12]  1         0  models.common.AdvPoolFusion             []                            
 26          [-1, 21]  1    330752  models.common.InjectionMultiSum_Auto_pool[384, 512, [64, 128], 1]      
 27                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 28      [19, 24, 27]  1      9270  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 128, 256]]

Model Summary: 455 layers, 9138870 parameters, 9138870 gradients, 20.1 GFLOPs

运行后若打印出如上文本代表改进成功。

五、YOLOv5n改进工作

完成二后,在YOLOv5项目文件下的models文件夹下创建新的文件yolov5n-goldyolo.yaml,导入如下代码。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[[2, 4, 6, 9], 1, SimFusion_4in, []], # 10
   [-1, 1, IFM, [[64, 32]]], # 11

   [9, 1, Conv, [512, 1, 1]], # 12
   [[4, 6, -1], 1, SimFusion_3in, [512]], # 13
   [[-1, 11], 1, InjectionMultiSum_Auto_pool, [512, [64, 32], 0]], # 14
   [-1, 3, C3, [512, False]], # 15

   [6, 1, Conv, [256, 1, 1]], # 16
   [[2, 4, -1], 1, SimFusion_3in, [256]], # 17
   [[-1, 11], 1, InjectionMultiSum_Auto_pool, [256, [64, 32], 1]], # 18
   [-1, 3, C3, [256, False]], # 19

   [[19, 15, 9], 1, PyramidPoolAgg, [352, 2]], # 20
   [-1, 1, TopBasicLayer, [352, [64, 128]]], # 21

   [[19, 16], 1, AdvPoolFusion, []], # 22
   [[-1, 21], 1, InjectionMultiSum_Auto_pool, [256, [64, 128], 0]], # 23
   [-1, 3, C3, [256, False]], # 24

   [[-1, 12], 1, AdvPoolFusion, []], # 25
   [[-1, 21], 1, InjectionMultiSum_Auto_pool, [512, [64, 128], 1]], # 26
   [-1, 3, C3, [512, False]], # 27

   [[19, 24, 27], 1, Detect, [nc, anchors]] # 28
  ]

                 from  n    params  module                                  arguments                     
  0                -1  1      1760  models.common.Conv                      [3, 16, 6, 2, 2]              
  1                -1  1      4672  models.common.Conv                      [16, 32, 3, 2]                
  2                -1  1      4800  models.common.C3                        [32, 32, 1]                   
  3                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  4                -1  2     29184  models.common.C3                        [64, 64, 2]                   
  5                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  6                -1  3    156928  models.common.C3                        [128, 128, 3]                 
  7                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  8                -1  1    296448  models.common.C3                        [256, 256, 1]                 
  9                -1  1    164608  models.common.SPPF                      [256, 256, 5]                 
 10      [2, 4, 6, 9]  1         0  models.common.SimFusion_4in             []                            
 11                -1  1    333888  models.common.IFM                       [480, [64, 32]]               
 12                 9  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 13        [4, 6, -1]  1     57856  models.common.SimFusion_3in             [[64, 128, 128], 128]         
 14          [-1, 11]  1    134144  models.common.InjectionMultiSum_Auto_pool[128, 512, [64, 32], 0]       
 15                -1  1    123648  models.common.C3                        [512, 128, 1, False]          
 16                 6  1      8320  models.common.Conv                      [128, 64, 1, 1]               
 17        [2, 4, -1]  1     14592  models.common.SimFusion_3in             [[32, 64, 64], 64]            
 18          [-1, 11]  1     34304  models.common.InjectionMultiSum_Auto_pool[64, 256, [64, 32], 1]        
 19                -1  1     31104  models.common.C3                        [256, 64, 1, False]           
 20       [19, 15, 9]  1    158400  models.common.PyramidPoolAgg            [448, 352, 2]                 
 21                -1  1   2222528  models.common.TopBasicLayer             [352, [64, 128]]              
 22          [19, 16]  1         0  models.common.AdvPoolFusion             []                            
 23          [-1, 21]  1     67072  models.common.InjectionMultiSum_Auto_pool[128, 256, [64, 128], 0]      
 24                -1  1     31104  models.common.C3                        [256, 64, 1, False]           
 25          [-1, 12]  1         0  models.common.AdvPoolFusion             []                            
 26          [-1, 21]  1    232448  models.common.InjectionMultiSum_Auto_pool[192, 512, [64, 128], 1]      
 27                -1  1    123648  models.common.C3                        [512, 128, 1, False]          
 28      [19, 24, 27]  1      4662  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [64, 64, 128]]

Model Summary: 455 layers, 4657110 parameters, 4657110 gradients, 8.3 GFLOPs

运行后打印如上代码说明改进成功。

更多文章产出中,主打简洁和准确,欢迎关注我,共同探讨!

  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值