网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
O(logn)
O(logn) | 采用递归算法依次降幂即可,按位运算可以加快速度 | ToDo |
| 13.调整数组顺序使奇数位于偶数前面 | Medium | | python可以使用lambda | ToDo |
| 14.链表中倒数第k个结点 | Medium |
O
(
n
)
O(n)
O(n) | 双指针,一前一后 | Done |
| 15.反转链表 | Medium |
O
(
n
)
O(n)
O(n) | | ToDo |
| 16.合并两个排序链表 | Medium |
O
(
n
m
)
O(n+m)
O(n+m) | 递归,依次返回两个链表的最小值 | Done |
| 17.判断子结构 | Medium |
O
(
)
O()
O() | ToDo | |
| 18.二叉树的镜像 | Easy |
O
(
)
O()
O() | 递归依次交换左右子树即可 | Done |
| 20.包含min函数的栈 | Medium |
O
(
n
)
O(n)
O(n) | 建一个辅助栈,保存当前数的最小值 | ToDo |
| 28.数组中出现次数超过一半的数字 | Medium |
O
(
n
)
;
O
(
l
o
g
n
)
O(n);O(logn)
O(n);O(logn) | 遍历数组;从中间向两边展开 | Done |
| 29.最小的k个数 | Medium |
O
(
n
l
o
g
n
)
;
O
(
n
)
O(nlogn);O(n)
O(nlogn);O(n) | 排序然后输出;挑选替换 | Done |
| 30.连续子数组的最大和 | Easy |
O
(
n
2
)
;
O(n^2);
O(n2); | 暴力法,求解所有字符串的和; | Done |
| 31.整数1出现的次数 | Easy |
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn) | 遍历,然后计算个数 | Done |
| 32.把数组排成最小的数 | Medium |
O
(
n
2
)
;
O(n^2);
O(n2); | 字符串两两比较 | ToDo |
| 33.丑数 | Medium |
O
(
n
)
O(n)
O(n) | 依次生成 | Done |
| 34.第一个只出现一次的字符 | Easy |
O
(
n
)
O(n)
O(n) | 保存字典然后判断 | Done |
| 35.数组中的逆序对 | Medium |
O
(
n
2
)
;
O
(
n
l
o
g
n
)
O(n^2);O(nlogn)
O(n2);O(nlogn) | 暴力; | Done |
| 37.数字在排序数组中出现的次数 | Easy |
O
(
n
)
;
O
(
l
o
g
n
)
O(n);O(logn)
O(n);O(logn) | 遍历;二分查找 | Done |
| 40.数组中只出现一次的数字 | Easy |
O
(
n
)
O(n)
O(n) | 哈希表 | Done |
| 41.和为s的连续正数序列 | Easy |
O
(
n
2
)
,
O
(
n
)
,
O
(
l
o
g
n
)
O(n^2),O(n),O(logn)
O(n2),O(n),O(logn) | 双指针;遍历数组求另一个解;二分法 | Done |
| 42.和为S的两个数字 | Easy |
O
(
n
)
O(n)
O(n) | 双指针 | Done |
| 43.左旋转字符串 | Easy |
O
(
1
)
O(1)
O(1) | 好吧,太简单 | Done |
| 44.翻转单词顺序列 | Easy |
O
(
n
)
O(n)
O(n) | 翻转组合 | Done |
| 45.扑克牌顺子 | Easy |
O
(
n
)
O(n)
O(n) | gap和大小王个数比较 | Done |
| 46.圆圈中最后剩下的数 | Easy |
O
(
n
)
O(n)
O(n) | 模拟这个过程 | Done |
| 47.求1+2+3+…+n | Easy |
O
(
n
)
O(n)
O(n) | 利用and实现递归终止 | Done |
| 48.不用加减乘除做加法 | Medium |
O
(
1
)
O(1)
O(1) | 利用位运算来实现 | ToDO |
| 49.把字符串转换成整数 | Easy |
O
(
n
)
O(n)
O(n) | 主要是负数和特殊情况 | Done |
| 50.数组中重复的数字 | Easy |
O
(
n
)
O(n)
O(n) | 哈希表保存次数然后输出 | Done |
| 51.构建乘积数组 | Medium |
O
(
n
)
O(n)
O(n) | 正反向遍历,依次保存之前的乘积值 | Done |
| 53.表示数值的字符串 | Easy |
O
(
1
)
O(1)
O(1) | 作弊式操作float | Done |
| 矩阵中路径 | Medium | 回溯法,关键是如何写递归 | | |
1.二维数组中的查找
Q: 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
A1: 遍历整个二维数组,
O
(
n
2
)
O(n^2)
O(n2)
A2: 从右上或者左下开始查找。从右上开始查找:如果数组中的数比这个整数大,向左移动一位,如果数组中的数比这个数小,向下移动一位,
O
(
n
)
O(n)
O(n)。
class Solution:
# array 二维列表
def Find(self, target, array):
# write code here
if array == []:
return False
num_row = len(array)
num_col = len(array[0])
i,j = 0, num_col-1
while j >= 0 and i < num_row:
if array[i][j] > target:
j -= 1
elif array[i][j] < target:
i += 1
else:
return True
2.替换空格
Q: 请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
A1: 先计算最终需要给出的长度,然后建立两个指针p1,p2,p1指向原始字符串的末尾,p2指向替换后的字符串的末尾。同时移动p1,p2, 将p1指的内容逐个复制到p2, 当p1遇到空格时,在p2处插入 %20, p1向前移动一个位置,p2向前移动3个位置,当p1和p2位置重合时,全部替换完成。
# 30ms
class Solution:
# s 源字符串
def replaceSpace(self, s):
# write code here
if not isinstance(s, str) or len(s) <= 0 or s == None:
return ''
spaceNum = 0
for i in s:
if i == " ":
spaceNum += 1
newStrLen = len(s) + spaceNum \* 2
newStr = newStrLen \* [None]
indexOfOriginal, indexOfNew = len(s) - 1, newStrLen - 1
while indexOfNew >= 0 and indexOfOriginal <= indexOfNew:
if s[indexOfOriginal] == ' ':
newStr[indexOfNew - 2: indexOfNew + 1] = ['%', '2', '0']
indexOfNew -= 3
indexOfOriginal -= 1
else:
newStr[indexOfNew] = s[indexOfOriginal]
indexOfNew -= 1
indexOfOriginal -= 1
return ''.join(newStr)
A2: python中可以利用append() [O(1)],新建list,一次遍历,碰到空格就添加 %20,否则就添加原始字符串s内容。
# 27ms
class Solution:
# s 源字符串
def replaceSpace(self, s):
# write code here
if not isinstance(s, str) or len(s) <= 0 or s == None:
return ''
result = []
for char in s:
if char == ' ':
result.append('%20')
else:
result.append(char)
return ''.join(result)
def replaceSpace(self, s):
# write code here
result = ''
for char in s:
if char == ' ':
result += '%20'
else:
result += char
return result
3.从尾到头打印链表arrayList:
遍历链表,保存在list中,然后倒序输出.
# 运行时间:24ms
# 占用内存:5752k
class Solution:
# 返回从尾部到头部的列表值序列,例如[1,2,3]
def printListFromTailToHead(self, listNode):
# write code here
if listNode == None:
return []
result = []
while listNode != None:
result.append(listNode.val)
listNode = listNode.next
return result[::-1]
同样使用list,但是将其插入在list的0位置处。
# 运行时间:23ms
# 占用内存:5728k
class Solution:
# 返回从尾部到头部的列表值序列,例如[1,2,3]
def printListFromTailToHead(self, listNode):
# write code here
if not listNode:
return []
result =[]
while listNode:
result.insert(0, listNode.val)
listNode = listNode.next
return result
4.两个栈实现一个队列:
stack2作为中转stack,直接对stack1做push,pop的时候将stack1的pop到stack2中,便可以实现。stack:先入后出,queue:后入先出。
# 运行时间:25ms
# 占用内存:5724k
# -\*- coding:utf-8 -\*-
class Solution:
def \_\_init\_\_(self):
self.stack1 = []
self.stack2 = []
def push(self, node):
# write code here
self.stack1.append(node)
def pop(self):
# return xx
if len(self.stack1) == 0 and len(self.stack2) == 0:
return
if len(self.stack2) == 0:
while len(self.stack1) != 0:
self.stack2.append(self.stack1.pop())
return self.stack2.pop()
6.旋转数组的最小数字
Q: 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
A1: 遍历数组;
A2: 二分查找的变形,旋转数组的首元素肯定不小于旋转数组的尾元素,找一个中间点,如果中间点比首元素大,说明最小数字在中间点后面,如果中间点比尾元素小,说明最小数字在中间点前面。然后循环。 但是在一次循环中,首元素小于尾元素,说明该数组是排序的,首元素就是最小数字,如果出现首元素、尾元素、中间值三者相等,则只能在此区域中顺序查找。
# -\*- coding:utf-8 -\*-
class Solution:
# 运行时间:1127ms
# 占用内存:5864k
def minNumberInRotateArray(self, rotateArray):
# write code here
if len(rotateArray) == 0:
return 0
result = rotateArray[0]
for num in rotateArray:
if num < result:
result = num
return result
class Solution:
def minNumberInRotateArray(self, rotateArray):
# write code here
if len(rotateArray) == 0:
return 0
left,right = 0,len(rotateArray)-1
if rotateArray[left] < rotateArray[right]:
return rotateArray[left]
else:
while (right - left) > 1:
middle = (left+right)//2
if rotateArray[middle] <= rotateArray[right]:
right = middle
elif rotateArray[middle] >= rotateArray[left]:
left = middle
elif rotateArray[middle] == rotateArray[right] == rotateArray[left]:
minval = rotateArray[0]
for num in rotateArray:
minval = min(minval, num)
return minval
return rotateArray[right]
7.斐波那契数列
class Solution:
def Fibonacci(self, n):
# write code here
num1 = 0
num2 = 1
target = 0
for i in range(1, n+1):
num1 = num2
num2 = target
target = num1 + num2
return target
8.跳台阶:
和第七题类似,跳第n阶有两种情况,由倒数第二阶直接跳到第n阶,倒数第一阶直接跳到第n阶。
# -\*- coding:utf-8 -\*-
class Solution:
def jumpFloor(self, number):
# write code here
if number == 1:
return 1
elif number == 2:
return 2
num1 = 1
num2 = 2
target = num1 + num2
for i in range(2, number-1):
num1 = num2
num2 = target
target = num1 + num2
return target
9.变态跳台阶:
通过归纳法得出规律,然后直接由公式求解。
# -\*- coding:utf-8 -\*-
class Solution:
def jumpFloorII(self, number):
# write code here
return 2\*\*(number - 1)
10矩形覆盖:
# -\*- coding:utf-8 -\*-
class Solution:
def rectCover(self, number):
# write code here
if number == 1:
return 1
elif number == 2:
return 2
elif number == 0:
return 0
num1 = 1
num2 = 2
target = num1 + num2
for i in range(2, number-1):
num1 = num2
num2 = target
target = num1 + num2
return target
11. 二进制中1的个数:
将
n
n
n和
n
−
1
n-1
n−1按位做与运算,会将最右边的1设置为0。n不为0一直统计统计个数。
# -\*- coding:utf-8 -\*-
class Solution:
# 运行时间:27ms
# 占用内存:5728k
def NumberOf1(self, n):
# write code here
count = 0
if n < 0:
n = n & 0xffffffff
while n!= 0:
count += 1
n = (n-1)& n
return count
12.数值的整数次方
通过递归求解,如果幂次是偶数,直接除以2,如果是奇数,提取一个base后除以2。举例发现规律。注意点:幂次是否小于0,奇偶幂次的区分,幂次为0和1
# -\*- coding:utf-8 -\*-
class Solution:
# 运行时间:23ms
# 占用内存:5624k
def Power(self, base, exponent):
# write code here
try:
if exponent >= 0:
return self.Power_value(base, exponent)
else:
return 1/self.Power_value(base, abs(exponent))
except:
print('base == zero')
def Power\_value(self, base, exponent):
if exponent == 1:
return base
elif exponent == 0:
return 1
if exponent%2 == 0:
return self.Power(base, exponent>>1)\*\*2
else:
return base\*self.Power(base, exponent>>1)\*\*2
采用位运算可以加快速度,除以2可以通过向右移1位来实现,判断奇偶可以通过与1按位与来实现。
13.调整数组顺序使奇数位于偶数前面
python使用lambda解决。
class Solution:
# 运行时间:28ms
# 占用内存:5752k
def reOrderArray(self, array):
# write code here
return sorted(array,key=lambda c:c%2,reverse=True)
14.链表中倒数第k个结点:
Q: 输入一个链表,输出该链表中倒数第k个结点。
A: 设置两个指针指向头节点,第一个指针向前走k-1步,走到第k个结点,此时,第二个指针和第一个指针同时移动,当第一个指针到尾节点的时候,第二个指针指向倒数第k个结点,注意链表为空,k为0,k大于链表的长度的情况.
# 27ms
class Solution:
def FindKthToTail(self, head, k):
# write code here
if head == None or k <= 0:
return None
pointA = head
pointB = None
for i in range(k-1):
if pointA.next != None:
pointA = pointA.next
else:
return None
pointB = head
while pointA.next != None:
pointA = pointA.next
pointB = pointB.next
return pointB
15.反转链表:
Q: 输入一个链表,反转链表后,输出新链表的表头。
A: 主要注意当头结点为空或者整个链表只有一个结点时,翻转后的链表断裂,返回的翻转之后的头节点不是原来的尾节点。所以需要一个翻转后的头节点,一个指向当前结点的指针,两个分别指向当前结点的前后结点的指针,防止断裂。也可以使用递归。
class Solution:
# 35ms
def ReverseList(self, pHead):
# write code here
res = None
while pHead:
res,res.next,pHead = pHead,res,pHead.next
return res
16.合并两个排序的链表:
Q: 输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则。
A1递归: 比较头节点大小,小的作为合并后链表的头节点,再比较剩余部分和另一个链表的头节点,取小的,然后一直递归此过程。
class Solution:
# 返回合并后列表
def Merge(self, pHead1, pHead2):
# write code here
if pHead1 == None:
return pHead2
if pHead2 == None:
return pHead1
pMergeHead = None
if pHead1.val < pHead2.val:
pMergeHead = pHead1
pMergeHead.next = self.Merge(pHead1.next, pHead2)
else:
pMergeHead = pHead2
pMergeHead.next = self.Merge(pHead1, pHead2.next)
return pMergeHead
17.树的子结构:
# -\*- coding:utf-8 -\*-
# class TreeNode:
# def \_\_init\_\_(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def HasSubtree(self, pRoot1, pRoot2):
# write code here
result = False
if pRoot1 != None and pRoot2 != None:
if pRoot1.val == pRoot2.val:
result = self.DoesTree1haveTree2(pRoot1, pRoot2)
if not result:
result = self.DoesTree1haveTree2(pRoot1.left, pRoot2)
if not result:
result = self.DoesTree1haveTree2(pRoot1.right, pRoot2)
return result
def DoesTree1haveTree2(self, pRoot1, pRoot2):
if pRoot2 == None:
return True
if pRoot1 == None:
return False
if pRoot1.val != pRoot2.val:
return False
return self.DoesTree1haveTree2(pRoot1.left, pRoot2.left) & self.DoesTree1haveTree2(pRoot1.right, pRoot2.right)
18.二叉树的镜像:
class Solution:
# 返回镜像树的根节点
def Mirror(self, root):
# write code here
if root == None:
return None
if root.left == None and root.right == None:
return root
temp = root.left
root.left = root.right
root.right = temp
self.Mirror(root.left)
self.Mirror(root.right)
20.包含min函数的栈:
求得栈的最小值,时间复杂度是
O
(
1
)
O(1)
O(1)。建立一个辅助栈,每增加一个数,保存目前所有数的最小值在辅助栈的栈顶。
class Solution:
# 运行时间:23ms
# 占用内存:5752k
def \_\_init\_\_(self):
self.stack = []
self.minStack = []
def push(self, node):
# write code here
self.stack.append(node)
if self.minStack == [] or node < self.min():
self.minStack.append(node)
else:
temp = self.min()
self.minStack.append(temp)
def pop(self):
# write code here
if self.stack == None or self.minStack == None:
return None
self.minStack.pop()
self.stack.pop()
def top(self):
# write code here
return self.stack[-1]
def min(self):
# write code here
return self.minStack[-1]
28.数组中出现次数超过一半的数字:
暴力做法,保存每一个数出现的次数,然后判断每一个数的次数是否超过一半。
# 运行时间:28ms
# 占用内存:5860k
class Solution:
def MoreThanHalfNum\_Solution(self, numbers):
# write code here
num_dict = {}
lenght = len(numbers)
result = 0
for num in numbers:
try:
num_dict[num] = num_dict[num] + 1
except:
num_dict[num] = 1
for key, values in num_dict.items():
if values > lenght//2:
result = key
return result
如果这个数存在那么一定在数组的中间,提取数组中间这个数,然后统计其出现的次数,判断是否超过一半:
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
self.stack.append(node)
if self.minStack == [] or node < self.min():
self.minStack.append(node)
else:
temp = self.min()
self.minStack.append(temp)
def pop(self):
# write code here
if self.stack == None or self.minStack == None:
return None
self.minStack.pop()
self.stack.pop()
def top(self):
# write code here
return self.stack[-1]
def min(self):
# write code here
return self.minStack[-1]
#### 28.数组中出现次数超过一半的数字:
暴力做法,保存每一个数出现的次数,然后判断每一个数的次数是否超过一半。
运行时间:28ms
占用内存:5860k
class Solution:
def MoreThanHalfNum_Solution(self, numbers):
# write code here
num_dict = {}
lenght = len(numbers)
result = 0
for num in numbers:
try:
num_dict[num] = num_dict[num] + 1
except:
num_dict[num] = 1
for key, values in num_dict.items():
if values > lenght//2:
result = key
return result
如果这个数存在那么一定在数组的中间,提取数组中间这个数,然后统计其出现的次数,判断是否超过一半:
[外链图片转存中...(img-zxyEdPW6-1715708758029)]
[外链图片转存中...(img-Lz3pNPlk-1715708758029)]
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618658159)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**