Go最全一文读懂机器学习分类全流程_平衡数据集(1),2024年最新真牛皮

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

df.info()

aad8d10e36654b628a69c1a7ab67602b.png

通过查看数据与其组织结构,我们可以发现数据有2448行,385列,其中有大量的无效数据。

2.查看数据分布

我们可以对数据进行可视化来发现数据集中的数据分布。

①各国样本分布直方图

通过调用barh()函数将数据绘制为柱状图。

df.cuisine.value_counts().plot.barh() #根据不同国家对数据集进行划分

结果如下:

f5a7565988fc451bb171128b5e1800e0.png

我们可以看到,数据集中以韩国料理样本最多,泰国样本最少。美食的数量有限,但数据的分布是不均匀的。我们可以解决这个问题!在此之前,请进一步探索。

②各国样本划分

了解各国美食有多少可用数据并将其打印输出。输入以下代码,从结果中我们可以看到不同国家美食的可用数据:

thai_df = df[(df.cuisine == "thai")]#提取泰国美食
japanese_df = df[(df.cuisine == "japanese")]#提取日本美食
chinese_df = df[(df.cuisine == "chinese")]#提取中国美食
indian_df = df[(df.cuisine == "indian")]#提取印度美食
korean_df = df[(df.cuisine == "korean")]#提取韩国美食
print(f'thai df: {thai_df.shape}')#输出数据结构
print(f'japanese df: {japanese_df.shape}')#输出数据结构
print(f'chinese df: {chinese_df.shape}')#输出数据结构
print(f'indian df: {indian_df.shape}')#输出数据结构
print(f'korean df: {korean_df.shape}')#输出数据结构

37a7a5b8f2d54363a3e1fdc109ba7543.png

3.各国最受欢迎食材可视化

现在,我们可以更深入的挖掘数据,并了解每种菜肴的成分。在此之前,我们应该对数据进行预处理,删去重复值。

在python中创建一个函数来删除无用的列,然后按成分数量进行排序。

def create_ingredient_df(df):
    ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')#从原始数据中删除无效列并统计axis=1的总和赋值给value列
    ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]#提取所有非0值的样本
    ingredient_df = ingredient_df.sort_values(by='value', ascending=False,
    inplace=False)#按照数值的大小进行排序
    return ingredient_df#返回处理并排序后的结果

现在,我们调用create_ingredient_df()函数来了解泰国美食中,最受欢迎的十大食材。输入以下代码:

thai_ingredient_df = create_ingredient_df(thai_df)
thai_ingredient_df.head(10).plot.barh()

查看泰国美食中十大最受欢迎的食材:

016773948d374a64b73075572a82738c.png

我们可以看到,第一名的食材是garlic(大蒜),第十名则是chicken(鸡肉)。

对中国数据执行同样的操作:

chinese_ingredient_df = create_ingredient_df(chinese_df)
chinese_ingredient_df.head(10).plot.barh()

结果如下,中国美食食材中,最受欢迎的是soy_sauce(酱油),第十名是cayenne(红辣椒):

4d606c93c827479787918d483fd9aca9.png

同理,我们也可以输出其他国家的美食食材,这里就不水文了。大家可自行尝试。

现在,我们需要使用drop()函数删除不同美食间造成混淆的最常见成分以突出各国食材的特色,每个国家的人都喜欢米饭、大蒜和生姜。(可自行可视化查看),我们输入以下代码将其删去。

feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)#删去最常见的这几列以平衡不同国家之间的混淆
labels_df = df.cuisine 

4.平衡数据集

现在我们已经清理了数据,因为不同国家的样本数量差异较大,我们需要使用SMOTE(“合成少数过度采样技术”)来平衡它。

SMOTE介绍

①样本插值采样

调用SMOTE对象的 **fit_resample()**函数来插值重采样生成新样本。输入以下代码:

oversample = SMOTE()
transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)
print(f'new label count: {transformed_label_df.value_counts()}')
print(f'old label count: {df.cuisine.value_counts()}')

查看新样本与旧样本的数据量差异:

53fd56e6e4514e8db52bce861f874eeb.png

我们可以看到,新样本不同类别标签下的样本数量都在799,它是以旧样本中最大样本量标签为基础构建的,而旧样本则参差不齐,分布不均匀。

数据质量很好,干净、平衡!🧸🧸

数据预处理的最后一步是将预处理后的数据导出以后直接调用。输入以下代码:

transformed_df.to_csv("cleaned_cuisines.csv")#保存至新文件方便下一次直接调用

三、分类器选择

现在,数据已经经过预处理,我们可以构建分类模型了!

但是选择什么模型好呢?

Scikit-learn中的分类算法在监督学习下,在该类别中,我们将找到许多分类方法。这种多样性一见钟情就相当令人眼花缭乱。以下方法都包含分类技术:

线性模型

支持向量机

随机梯度下降

最近邻

高斯过程

决策树

集成学习(随机森林)

多类和多输出算法(多类和多标签分类、多类-多输出分类)

使用什么分类器?

通常,同时运行几个分类模型,最终找到精度最高的方法很常用。Scikit-learn提供了对所创建数据集的并列比较,比较了下面模型的结果。

KNeighbors,SVC,GaussianProcessClassifier,DecisionTreeClassifier,RandomForestClassifier,MLPClassifier,AdaBoostClassifier,GaussianNB和QuadraticDiscrinationAnalysis

下图显示了这些模型可视化的结果:

ea2a88fe5d1b4a7a99c7b9ae0ffcee17.png

这种方法在数据集样本较少时可以使用,但随着样本数量的增多,这对计算的负担将会越来越大。我们先不考虑这种方法。请继续向下看😀。

四、逻辑回归模型构建

前文中,我们已经对数据进行了预处理,方便起见,我们在后续文章中直接调用经过预处理的 cleaned_cuisines.csv 文件。

我们在之前的逻辑回归文章中,有学到逻辑回归的基本原理与构建流程,这里我们可以尝试使用逻辑回归来解决问题。

1.数据导入及查看

导入第三方库并加载经过预处理的数据cleaned_cuisines.csv。输入以下代码:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
from sklearn.svm import SVC
import numpy as np
import pandas as pd
cuisines_df = pd.read_csv("cleaned_cuisines.csv")
print(cuisines_df.info())
cuisines_df.head()

数据如下图所示:

965d7868479f42289347eee320ecd678.png

2.可训练特征与预测标签选择及数据集划分

以美食数据集的所属国家列为预测标签Y,食材为可训练特征构建数据集。并以7:3的比例划分训练集与测试集。输入以下代码:

cuisines_label_df = cuisines_df['cuisine'] #以cuisine列为预测标签
cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) #删去无用的列,取食材列为可训练特征
X_train, X_test, Y_train, Y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)#以7:3比例划分训练集与测试集

3.构建逻辑回归模型及精度评价

使用划分好的数据集进行逻辑回归模型构建,打印出模型的精度评价表;测试模型的预测效果。输入以下代码:

lr = LogisticRegression(multi_class='ovr',solver='liblinear')
model = lr.fit(X_train, np.ravel(Y_train))

accuracy = model.score(X_test, Y_test)
print ("Accuracy is {}".format(accuracy))
Y_pred = model.predict(X_test)
print(classification_report(Y_test,Y_pred))

输出结果为ACC系数为:79.1%

通过打印出该模型的精度评价表我们可以获得更多的模型信息:

cde6a3492cd543a5b9a29c82621a889b.png

4.模型测试

测试模型并查看模型在测试集上将样本分类为不同类别的概率:

print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')
print(f'cuisine: {Y_test.iloc[50]}')
test= X_test.iloc[50].values.reshape(-1, 1).T
proba = model.predict_proba(test)
classes = model.classes_
resultdf = pd.DataFrame(data=proba, columns=classes)
topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])
topPrediction.head()

输出结果为:

7472a5308fd0484ea4192b3333cdfbd8.png

可以看到对于测试集上的某个样本,其预测为日本菜的概率为91%。

五、更多分类模型

在前文中,我们已经构建了逻辑回归模型,那么可以使用其他模型吗,怎么选择呢?

在开始选择分类器之前,我要向各位读者推荐一个机器学习神器----分类地图

Scikit-learn提供了一个机器学习分类器选择的地图,它可以进一步帮助使用者缩小分类器的选择范围,如下图:

cf885a147f834f6d8ff96dc9f8077db1.png

一旦我们对数据有了一定的了解,此地图将极大的节省我们的试错成本,因为我们可以沿着其路径“行走”来选择需要的模型(看着图走):

0 我们有大于50个样本

1 我们想要预测一个类别

2 我们标记了数据

3 我们的样本少于100K

4 我们可以选择线性SVC

5 如果这不起作用,因为我们有数字数据

6 我们可以尝试 KNeighbors Classifier

7 如果这不起作用,请尝试 SVC 和 集成分类器(诸如随机森林)

这是一条非常有用的工具,对机器学习初学者很友好。

1.第三方库导入

按照这条路径,我们首先需要导入多分类器需要的第三方库:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
import numpy as np

数据和训练样本我们继续使用之前划分好的数据集。

2.测试不同分类器

①线性SVC分类器

支持向量聚类 (SVC) 是支持向量机机器学习技术系列的子集。在此方法中,你可以选择一个“核函数”来决定如何对标签进行聚类。“C”参数是指“正则化”,它调节参数的影响。内核有多个选择;在这里,我们将其设置为“线性”核函数。概率默认为“假”;在这里,我们将其设置为“true”以收集概率估计值。我们将随机状态设置为“0”,以随机排列数据以获得概率。

首先我们需要创建一个分类器列表,用于存储之后新增的机器学习分类器。先放入一个线性SVC分类器。

C = 10 #正则化参数设置为10
# Create different classifiers.
classifiers = {
    'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0)
}#创建分类器列表

使用线性SVC训练模型并打印精度报告:

n_classifiers = len(classifiers)

for index, (name, classifier) in enumerate(classifiers.items()):
    classifier.fit(X_train, np.ravel(y_train))

    y_pred = classifier.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))
    print(classification_report(y_test,y_pred))

7f1a72d544a442f08e15152e2b714d34.png

查看线性SVC的精度报告,效果还不错,准确率达到了78.6%。

②K-近邻分类器

K-Neighbors是机器学习常用的方法,可用于监督学习与无监督学习。在此方法中,需要预先创建部分点数,并在这些点周围收集数据,以预测数据的广义标签。

我们在之前创建的分类器列表中加入KNN分类器代码。运行以后再次查看精度:

'KNN classifier': KNeighborsClassifier(C),

39b419b31fb64cce91b49febeadbf590.png

🤨精度有所下降。。

③SVM分类器

SVM分类器是用于分类和回归任务的支持向量机机器学习方法系列的子集。SVM“将训练样本点映射到高维空间中”,最大化两个类别之间的距离。后续的预测数据被映射到此空间中,来预测其类别。

我们在K-近邻算法后加入支持向量分类器:

'SVC': SVC(),

再次运行,查看SVM支持向量模型结果。

b279042fc5e44877901e8755b07cdcb5.png

​       **🥇fantastic!**精度上升到了82.4%。

继续测试其他模型…

④集成分类器

之前的测试精度相当不错。让我们尝试使用集成学习模型,特别是Random Forest和AdaBoost吗,在模型中列表加入下面代码后运行:

'RFST': RandomForestClassifier(n_estimators=100), 
'ADA': AdaBoostClassifier(n_estimators=100)

ec78e70fc28d40b99e27a61e34cfe1b3.png

​        很不戳!🎈🎈RFST随机森林的精度达到了83.4%,AdaBoost似乎不太好,不过这不重要。

集成学习方法结合了几个基本分类器的预测,以提高模型的质量。在我们的示例中,我们使用了 Random TreesAdaBoost

0 随机森林是一种平均方法,它构建了一个由“决策树”组成的“森林”,注入了随机性,以避免过度拟合。n_estimators参数设置为树的数量。

1 AdaBoost 将分类器拟合到数据集,然后将该分类器的副本拟合到同一数据集。它侧重于错误分类项目的权重,并调整下一个分类器要更正的拟合度。

这些技术中的每一种都有大量超参数可以调整。读者可以自行研究每个参数的默认参数,并尝试调整这些参数观察其对模型质量的影响

六、模型发布为Web应用

我在模型部署的文章中有讲解使用Flask框架和pickle库打包模型及应用构建的全流程,虽然之前按用的时回归模型。但回归模型与分类模型部署的流程一样:

训练模型>模型打包>应用配置>模型部署>运行测试

1.模型打包

方便起见,我们我们使用刚刚训练好的逻辑回归分类模型,将其使用Pickle库将其打包为 美食预测.pkl文件,以便后续的使用。输入以下代码:

import pickle
model_filename = 'cuisines.pkl'
pickle.dump(model, open(model_filename,'wb'))
model = pickle.load(open('cuisines.pkl','rb'))
print(model.predict([range(1,381)]))

输出的结果为 Indian🤣,(这里参数其实有错,因为输入特征有380个,不可能一个一个输入…我自己就编了点,还是三哥吃的杂。项目实践中我们对大量样本常常使用批处理,只有小样本才这样直接输入)。

8bbd56890f214fc8812d212812fda0f5.png

可以看到文件夹下已经生成了打包好的模型。😊

2.配置Flask应用

详细配置请看:机器学习系列8 基于Python构建Web应用以使用机器学习模型

我们这里只配置关键文件index.html和app.py,其他文件配置请看此文。

①index.html
<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>🍕亚洲美食预测器🍖</title>
    <link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
  </head>

  <body>
    <div class="grid">

      <div class="box">

        <p>根据拥有的食材来预测UFO出现的国家!</p>
        <p>包含的食材填1,不包含的填0</p>
        <form action="{{ url_for('predict')}}" method="post">
          <input type="number" name="cayenne" placeholder="cayenne" required="required" min="0" max="60" />
          <input type="number" name="onion" placeholder="onion" required="required" />
          <input type="number" name="pear" placeholder="pear" required="required" />
		  <input type="number" name="radish" placeholder="radish" required="required" />
		  <input type="number" name="sake" placeholder="sake" required="required" />
		  <input type="number" name="scallion" placeholder="scallion" required="required" />
		  <input type="number" name="sesame_oil" placeholder="sesame_oil" required="required" />
		  <input type="number" name="vegetable" placeholder="vegetable" required="required" />
		  <input type="number" name="vegetable_oil" placeholder="vegetable_oil" required="required" />
          <button type="submit" class="btn">预测</button>
        </form>

        <p>{{ prediction_text }}</p>

      </div>

    </div>

  </body>
</html>


![img](https://img-blog.csdnimg.cn/img_convert/df3fc7179f4f1220ac4b9cb1547cdad7.png)
![img](https://img-blog.csdnimg.cn/img_convert/8e4b8be95f1d2393c1bd1d3d04a4dc08.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618658159)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**


		  <input type="number" name="sesame_oil" placeholder="sesame_oil" required="required" />
		  <input type="number" name="vegetable" placeholder="vegetable" required="required" />
		  <input type="number" name="vegetable_oil" placeholder="vegetable_oil" required="required" />
          <button type="submit" class="btn">预测</button>
        </form>

        <p>{{ prediction_text }}</p>

      </div>

    </div>

  </body>
</html>


[外链图片转存中...(img-cxfjf0Qb-1715822399723)]
[外链图片转存中...(img-FgY9zGLI-1715822399723)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618658159)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 下面是一种可能的实现方式,使用了位运算符和条件语句: ```c #include <stdio.h> int main() { unsigned int r1 = 0xFFFFFFFF; // 32位1 unsigned int r2 = 0; r1++; // 计数器r1加1 // 如果r1变为0,说明已经达到32位计数的最大值,此时r2计数加1 if (r1 == 0) { r2++; } printf("r1 = %u\n", r1); printf("r2 = %u\n", r2); return 0; } ``` 在这个示例中,我们首先将32位计数器r1初始化为1,然后执行r1++操作,将其加1。接着,我们使用if语句检查r1是否变为0,如果是,则说明已经达到32位计数的最大值,此时将64位计数器r2加1。最后,我们输出r1和r2的值,以验证代码是否正确。 需要注意的是,在使用无符号整数进行位运算时,右移操作会在左侧填充0,因此我们不需要担心符号位的问题。 ### 回答2: 可以通过位移运算符来实现将32位寄存器r1的计数值赋给寄存器r2,并使得r2的计数值达到64位的效果。 具体的c语言代码如下所示: ```c #include <stdint.h> // 包含stdint.h头文件来使用固定宽度整数型 int main() { uint32_t r1 = 0xFFFFFFFF; // r1寄存器计数为一 uint64_t r2 = (uint64_t)r1; // 使用强制型转换将r1的计数值赋给r2,并实现64位计数效果 // 打印r1和r2的计数值 printf("r1计数值: 0x%08X\n", r1); printf("r2计数值: 0x%016llX\n", r2); return 0; } ``` 以上代码中使用了stdint.h头文件中定义的固定宽度整数型,其中`uint32_t`为32位无符号整数型,`uint64_t`为64位无符号整数型。 运行以上代码,将会得到r1和r2的计数值的十六进制输出结果。这种方法实现了通过32位寄存器r1的计数达到64位计数的效果。 ### 回答3: 在C语言中,我们可以使用无符号整型unsigned int来模拟32位和64位寄存器。下面是一个示例代码,实现当32位寄存器r1计数为一后,32位寄存器r2计数加一,达到64位计数的效果: ```c #include <stdio.h> unsigned int r1 = 0xFFFFFFFF; // 初始值为一 unsigned int r2 = 0; int main(){ printf("32位寄存器r1计数:%u\n", r1); printf("32位寄存器r2计数:%u\n", r2); r1++; if (r1 == 0) { r2++; } printf("32位寄存器r1计数:%u\n", r1); printf("32位寄存器r2计数:%u\n", r2); return 0; } ``` 在这个示例中,我们假设32位寄存器的计数是从0开始的,当r1计数达到一(0xFFFFFFFF)时,r1会自动溢出变为0。我们通过判断r1的值是否为0来确定是否需要让r2计数加一。当r1溢出后,r2的计数加一,达到64位计数的效果。 运行这段代码,输出结果如下: ``` 32位寄存器r1计数:4294967295 32位寄存器r2计数:0 32位寄存器r1计数:0 32位寄存器r2计数:1 ``` 可以看到,当r1计数达到一时,r2的计数加一,实现了64位计数的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值