1. 背景介绍
1.1 图像识别的局限性
传统的图像识别技术主要集中在对图像进行分类,例如识别图像中是否存在猫、狗、汽车等物体。然而,这种方法只能提供图像的浅层信息,无法深入理解图像的语义内容。例如,一张包含猫和沙发的图像,传统的图像识别技术只能识别出图像中存在猫和沙发,却无法描述猫和沙发之间的关系,比如“猫坐在沙发上”。
1.2 图像理解的兴起
为了克服图像识别的局限性,图像理解应运而生。图像理解的目标是让计算机能够像人一样理解图像,不仅能够识别图像中的物体,还能理解物体之间的关系,并用自然语言描述图像的内容。
1.3 深度学习的推动
近年来,深度学习技术的快速发展为图像理解提供了强大的工具。深度学习模型能够从大量的图像数据中学习复杂的特征表示,从而实现更准确、更深入的图像理解。
2. 核心概念与联系
2.1 卷积神经网络 (CNN)
卷积神经网络 (CNN) 是一种专门用于处理图像数据的深度学习模型。CNN 通过卷积层和池化层提取图像的特征,然后将这些特征输入到全连接层进行分类或回归。
2.2 循环神经网络 (RNN)
循环神经网络 (R